version 2.4.8

Reference Manual

Michael Freed
Eric Dahlman
Michael Dalal
Robert Harris
Reagan Jew

Y. § Ames Research Center

© 2004 NASA Ames Research Center
All trademarks are the property of their respective owners.

Printed in the United States of America.
Layout Design: Reagan Jew

Edition: May 11, 2004

NASA Ames Research Center

Moftett Field, CA 94035

(650) 604-5000

apexhelp@eos.arc.nasa.gov

http://human-factors.arc.nasa.gov/apex

mailto:apexhelp@eos.arc.nasa.gov
http://human-factors.arc.nasa.gov/apex

Contents

1.0 Introduction 1
1.1 WRALIS APEX? .ttt e et e e e e sne e e neeens 1
1.2 System COMPONENES.......cc.oiiieieeeeeeeeee e 2
1.3 Getting More Information.............cceeeeiiiicce i 3
1.4 CONVENTIONS ..ot ae e e s e e se e e e sne e e eneeens 4

2.0 Getting Started 5
A RS 1= 1T T o USRS 5
22 O [T G [11 5

3.0 Using Apex 8
3.1 Interacting With APEX.......cccoiiieieieceesee et 8
3.2 Introduction to Apex ApplICatioNSccceerireeeeee e 9
3.3 Loading an ApPlICatioNcceeiieieeceeee e 9
3.4 Running an ApplICatioN..........ccoceeiiiiieieeeece e 10
3.5 Creating a New AppliCationccccooireeieeeee e 10

3.5.1 Lisp Programming and Emacs..........ccceereniriiriinieninene e 10
3.5.2 Application Definition Filecccooeieeiieiiieeeeeceeecee e, 11
3.5.3 ApPlication FlEScoeeieeeeee e 11
N S I o] = 4TSRS 12
3.5.4.1 UsING LIDrari€s........c.ocoeeiieiieeecee e 12

3.5.4.2 Creating LIibrariesccooovirineieieeeereseese e 12

3.5.4.3 Finding LIbrariescccoveiirineneseeeceeeeeese e 12

3.5.4.4 Provided LiDrariesccocoevereninerieseneese e 13

3.5.5 WOrlADUIIAETooeeeeeeeeeeee e 13

3.6 User Settings and Other Files ... 13
3.7 APEX OUIPUL ...t ere s 13
3.7.1 Generating EVENt TracCes.........ccocoviiiiereneeeeeeeeeese e 13
3.7.2 Generating and Examining PERT Chartscccocovniiviniicncieenens 15
3.7.3 Exporting a PERT Chart to Microsoft PowerPoint 15

3.8 SyStem PatChes........ccooiiiee e 16
3.9 GettiNG HEIP ..o 16

4.0 Procedure Description Language (PDL) 17
4.1 Action Selection ArchiteCture (ASA)oooieirireieeeeeeeeer e 18
4.2 PDL SYNAX ..ttt 20

VN T o3 oYL=V 1L =Y 21
O ¥ oV 1= 22
B.2.3 SLOD iiiiiitieeee et a e e b e e ae e aaeeeaeeeaeeeaeeeanas 23
424 WaLEEOT .iiiitiiiitieieiee et etee e etee et e e et e e e e e e e e e b e e e areeeaneeenns 24
A28 SELECE cuieetie et ettt e e et e e e reeeaneeenes 26
S B oT-5 o K=< BSOS 26
A.2.7 £OTALL ..ooiceiieeeeceee ettt et e ettt st e e et e e r e e e reeereeeaneeeans 27
VN T 3 =Y i i -SSR 28
R B o3 o K< o X - USRS 29
4210 AnterTUDL-COSL ccoiiiiiiiie ettt e et e e e e e e ear s e e e e e nnreee s 30
4211 QSSUME ...occuviecieeeeieeeeee e eeeeeeteeeeee e et e e et eeeteeeaeeeeaseesseeeseeeseeeaseeennns 30
O S Ty T T U= X T 31
4213 LANK .oeeivieeciieceee ettt et ete e et e et e et e e et e b e e et e e aae e ear e e e reeereeeareeeaneeenns 32

Apex Reference Manual (version 2.4.8) - Contents |

4214 PUDLISR ..cciieiieciie ettt ettt ettt ere e r e b aeeeae e aeeeaeeeanas 32

4.3 PDL PrIMItIVES.......coiiieieeiesesie e 33
431 Start-activVity . et 33

VNG T Y=Y kY=Y o1 =Y 34

G TG T oY= - SR 34

434 COGOVENL ...oooiteieeeeieeeeeeee e e etee e ee e e te e e te e e tee et esaeeesseeeseeeseeeaseeennns 35

4.3.5 reprioritiZe ..o e 35

4.3.0 NOLA-TESOULCEuvvieeurieeeeteeeeeiteeeesteeeeeareseesseeesasseeesenseessesseeesanseeess 35

437 LEleaSE-TESOULCEcccueeeueeeeteeetieeeteeeeeeeeteeeteeeseeseseeeaseeesseesaseeennes 36

4.4 PDLVAr@DIES........ccoe ettt 36

4.5 Miscellaneous Features ... 38
451 Agent’s Initial Task.........ccooriririiiniree e 38

4.5.2 PDL Partitions (Bundles)ccoereriieieieiereeceeeeeese e 38

5.0 Apex Programming Guide 39
T BT oE R R 39

5.2 AGEINES...cee b et e e 41

5.3 Application INterfaceooeeoeeecceee e 41

Y= T | T B W 42

5.5 defappliCation...cccccciciiiieiieieiiiecieeecteeesee e st e et e e e e e e r e e ne e e enneeenreas 42

5.6 EVENTLOGUING ..viiiiiiiieiie ettt 43

5.7 Pausing SIMUIAtIONScoiiiieeeeree e 44

R T =T 7o) < Y 45

5.9 Specifying New Agent RESOUICESccceeeuieieiieiice e 45
5.10 Publish-Subscribe Mechanism ..o 47
References 49
Glossary 50
Appendix A: Event Traces 52
A.1 Predefined ShOW-LEVEISooouiiiieeecece e 52

A.2 Lisp Commands for Controlling Trace Output............cccceeveeveiecceieceeeee. 52

A3 Trace Constraint SYNtaXcccoeeeeeririerenese e 53

L Y= o1 gl Y] = SRS 53
Appendix B: Apex Library 57
Appendix C: Troubleshooting 58
C.1 Common Problems.............ooouieieieceeeeceeeceeeee e e 58

C.2 KNOWN BUGS.....coiiieiciecteceeete ettt ettt r et sbeenneene s 59

C.3 Debugging TEChNIQUES.........ceiiiiririeeireee e 59
Appendix D: Pattern Matching 61
Appendix E: Application Definition File Example 62
Appendix F: Starting Apex within AllegroCommon Lisp 66
Index 68

Apex Reference Manual (version 2.4.8) - Contents i

1.0 Introduction

11 What is Apex?

Apex is a computer application for generating adaptive, intelligent behavior in complex
environments. It is the principal element of the Apex System that includes a range of
components for modeling, simulating and analyzing human behavior. Intended uses in-
clude:

* Helping engineers evaluate and design human-machine systems

* Anticipating how newly introduced technologies will affect human operators
+ Standing in for human participants in a training simulation

* Exploring or illustrating scientific theories of human performance

The Apex approach to human modeling separates aspects of behavior and performance
that apply to intelligent agents in general from aspects that are particular to humans. The
Action Selection Architecture (ASA) integrates Al techniques such as hierarchical plan-
ning and online-scheduling seen as useful for creating agents with human-level abili-

ty. By building capabilities into the architecture and providing a high-level language for
behavior representation, Apex makes it easier to create human agent models for com-
plex task environments. Findings from cognitive psychology and other areas concerned
with human performance are incorporated into the Human Resource Architecture (HRA),
which parameterizes and constrains the general agent model. A human model in Apex
combines the ASA and HRA with a set of behavior representations, some specific to the
task at hand, others general across many tasks.

Apex is meant to be a practical tool. It has proven successful in automating a Hu-
man-Computer Interaction analysis method called GOMS, including an especially power-
ful but complex variant called CPM-GOMS. The approach has also been useful for rapid-
ly developing simulations of normative human behavior and for reconstructing incidents
involving human error.

As a practical tool, one crucial consideration is to minimize the time and expertise
required to build new models. This goal influences every aspect of Apex. For example, in
production-system based cognitive architectures, behaviors are represented at an “atom-
ic” level at which the mechanisms of cognitive processing can be described in detail. In
Apex, behavior is represented at a high-level, allowing modelers to ignore how behavior
is generated and focus on what behaviors are desired. This can be viewed as trading use-
fulness at representing scientific theories of cognition for usefulness at representing com-
plex, large-scale tasks. Similarly, Apex incorporates approaches to many high-level as-

Apex Reference Manual (version 2.4.8) - Introduction 1

pects of cognition such as selecting action under uncertainty, managing concurrent tasks,
and task interleaving. These capabilities are relatively easy to invoke though a modeler is
provided little flexibility in representing how they are realized.

In developing Apex, it has become clear that constructing a practical, broadly ap-
plicable human-system modeling tool is too great a job for any small team of individu-
als. Given the great number of issues to be addressed and the many different kinds of ex-
pertise needed, such an endeavor is most naturally carried out through a distributed de-
velopment process. The design of the Apex system lends itself to distributed develop-
ment. While the Action Selection Architecture is complex and its subcomponents tightly
coupled, the other elements of the system are modular and thus relatively easy to extend,
modify or replace. For example, cognitive, perceptual and motor faculties represented in
the resource architecture are completely independent of the core action-selection mecha-
nism, allowing modelers to “plug-in” alternative sub-models. Similarly, Apex includes a
set of reusable “building blocks” for new models that can easily be modified or added to.
This document is intended mainly to support the use of Apex in its current form but also
provides important information for developing new Apex elements.

1.2 System Components

Software components of the Apex system fall into four categories or component layers
including: the intelligent agent layer, the human/environment layer, the infrastructure lay-
er and the user layer. The intelligent agent layer provides the ability to specify simulation
entities with complex behavior reflecting goals, new events and “how to” knowledge. Its
primary use in Apex is to model human operators, although it is also useful for modeling
other simulation entities such as robots and aircraft autopilots. The intelligent agent layer
currently includes a single component: the Action Selection Architecture (ASA), an im-
port from the field of artificial intelligence originally designed to control mobile robots
acting in complex, real-world environments. The capabilities it provides facilitate simula-
tion of relatively sophisticated aspects of human behavior such as adapting to time-pres-
sure, coping with uncertainty, and interleaving multiple tasks.

The human/environment layer includes a wide range of components for specifying
and making inferences about humans and other entities that populate a simulation. Impor-
tant subsets of these components are human resources models — representations of human
cognitive, perceptual and motor faculties such as hands and eyes — which together com-
prise the Human Resource Architecture (HRA). Each resource model specifies perfor-
mance-limiting characteristics. For example, the vision model specifies a restricted field
of view, variable acuity, and a time lag between sensing and interpreting visual informa-
tion. The agent and resource architectures combine to model a human agent. While the
Action Selection Architecture provides the ability to engage in complex behavior, the re-
source architecture causes this behavior to conform to human limits.

Also included in the human/environment layer are means for representing and rea-
soning about physical spaces (locales) and the spatial (e.g. containment, attachment, ad-
jacency) and visual properties (e.g. color, orientation) of objects in a locale. Other com-
ponents in this layer are building blocks for constructing models in human-computer in-
teraction domains. These include representations of interface widgets (e.g. buttons, mice,
keyboards) and of behaviors for using those widgets. The common theme for the compo-
nents of this layer is that they are ingredients for building models of human-machine sys-
tems. Though intended to be reusable, they should not be considered core components of
the Apex system. Users are encouraged to extend or replace these elements as they see fit.

Apex Reference Manual (version 2.4.8) - Introduction 2

The infrastructure layer provides essential services including simulation, trace
event logging and mechanisms for interoperating with non-Apex processes such as an ex-
ternal simulation of a physical environment. The simulation component is composed of
three parts: a simple language for defining “objects” to be simulated, a simulation engine
whose job it is to carry out the actual simulation process, and a Lisp interface for control-
ling the simulation process. Some extensions to the Apex system, including development
of new human resource models, require familiarity with simulation mechanisms and other
components of the infrastructure layer. However, most users will probably need to know
little more than how to operate the simulation engine — e.g. to begin or pause a simulation
trial.

The user interface layer provides components to facilitate model construction, mod-
el debugging, and analysis and visualization of simulation output. The central element of
this layer is Sherpa, a GUI that provides a range of services including buttons (shortcuts)
for controlling the simulation engine, tools for handling large volumes of trace output,
tools for examining simulation entities during and after a run, and a facility for automati-
cally generating graphical representations of agent behavior.

To apply Apex in a particular domain, a user creates a simworld — a representation
of a particular task and task environment. For example, to simulate people using a new
automatic banking machine, an Apex user would represent the new machine’s appear-
ance and behavior, the procedural knowledge needed to operate it, and a scenario provid-
ing specifications for a particular simulation run. Together, the Apex system and user-de-
fined simworld elements constitute an Apex application. To develop new applications, a
user should be comfortable programming in Lisp and should become familiar with the
contents of this manual.

1.3 Getting More Information

This document focuses on the practical aspects of using Apex. For the current version of Apex
and this document, visit http://human-factors.arc.nasa.gov/apex. More information is available
from several sources. Published papers describe many aspects of Apex including:

» using Apex for CPM-GOMS (John, et al. 2002)

* GOMS analyses (Freed and Remington, 2000a)
* human error prediction (Freed and Remington, 1998)

* human-system modeling methodology (Freed and Remington 2000b; Freed, Shafto
and Remington 1998; Freed and Shafto 1997)

* multitask management (Freed 2000; Freed 1998a)

* detailed description of the Apex Action Selection Architecture and the
modeling approach it supports (Freed 1998b)

To report a bug or consult on a technical problem, contact the Apex development team, ap
exhelp@eos.arc.nasa.gov. For information related to the development of the Apex system
send an email to Michael Freed, mfreed@arc.nasa.gov.

Extending and developing applications in Apex may require programming in Com-
mon Lisp. The complete text of Common Lisp by Guy Steele is at: http:/www-2.cs.cmu.edu/
afs/cs.cmu.edu/project/ai-repository/avhtml/cltl/cltl2.html.

Apex Reference Manual (version 2.4.8) - Introduction 3

http://human-factors.arc.nasa.gov/apex
mailto:apexhelp@eos.arc.nasa.gov
mailto:apexhelp@eos.arc.nasa.gov
mailto:mfreed@arc.nasa.gov
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html

1.4 Conventions

In order to make this manual easier to read, the following typography conventions have been
adopted. When code is shown, it appears in 11 pt Courier.
For example,

(procedure

(index (start-engine))
(step s1 (turn-key))

When a section of code is of particular importance, it is in bold 11 pt Courier. The
simob class is the main focus of this example:

(defclass book (simob); BOOK is a subclass of SIMOB

User input is shown in chevrons (i.e. <>) and sometimes has a qualifying statement fol-
lowing it. For example,

(apex-info :version <versions)

where <versions is a string.
So, the actual code a user enters would look something like this:

(apex-info :version “2.4")
The syntax of programming is displayed in italic 12 pt Times New Roman similar to this:

(procedure [:concurrent] <index-clause> <procedure-level-clause>")

Apex Reference Manual (version 2.4.8) - Introduction 4

20 Getting Started

2.1.

Setting Up

To use Apex you’ll need the following software:

1. The Apex system

Using a standard web browser, Apex can be downloaded from the following
web site: http://human-factors.arc.nasa.gov/apex.

Apex is available for Macintosh, Windows, Linux, and Solaris based computers.
Installation is simple as Apex comes “pre-built” and ready to start.

2. Java Runtime Environment (JRE)

This is most likely already installed. If needed, the JRE may be ob-
tained from the Apex web site along with installation instructions (see the
GettingStarted.html file included with the distribution).

. Text editor

Developing Apex applications requires programming in Common Lisp. By de-
fault, Apex runs inside GNU Emacs, the most popular editor for Lisp program-
ming. However, any other text editor may be used.

2.2 Quick Tour

This section outlines the basic elements of using Apex via Sherpa, its graphical user inter-
face. Using the attached Sherpa diagrams as a reference, follow these instructions to load,
run, and inspect the results of a sample scenario modeling a person operating an automat-
ed teller machine (ATM).

1. Start Apex

Directions for how to start and exit Apex, which vary depending upon operating
system, are found in the GettingStarted.html document in the Apex installation
folder/directory. Consulting these instructions, start Apex and its graphical user
interface, Sherpa.

2. Load an Application

Apex Reference Manual (version 2.4.8) - Getting Started 5

http://human-factors.arc.nasa.gov/apex

a) Click the Start button in Sherpa. This “connects” Sherpa to the Apex system
(which runs as a separate application).

Slicelvkw SRR —_—
Prosiaw Evant tab Eauakze view View tab | Equaizn view
Chock bearch Obgect tab Maximizo sion | Hem inspect lab Chargefont Delete inspect
(Baa { | Sherpa - ATM-CPM World l S I]
; #ﬁmeim% ===
im T o e

E

v ﬂ ATH-CPM Warld
¥ O LOCALE-4 WORLD:

¥ (3 HUMAK-LO ACENT

¥ [RESOURCES

(3} EXTERMAL SEVENT - 10

[avomioniio

(5 memoRy-10

G mGHT-napD-10

3 LEFT-HAND-10

[voce-10
D GAZE-10 The TEH
[G wision-10 :
* [AGEMDA 1 ==l ——y—
¥ [INTERFACE-DEECT-1 ATM l‘ E ﬁ T | I |*| *FJF!JIEH:H
¥ [l COMPONENTS [nﬁqm? l&u'rfou Jl_rﬁ!}"{u 1044) ! "' 1 |
i § [@] (FOE #{BUTTON-7 2-KEY} (43 104)) | | {
(8 PUTTON-15 OR-KEV (o (ras §{nuTTaN-# 3-WEr]| (43 104)) { [
[BuTToN-4 Mo -kEY [0} (POS E[BUTTON-5 4-KEY} (&3 104)) / f | |
[F wouse-1 [9] (PG5 §{BUTTON-10 ;—n::} (43 104}) | f | |
. i [0] (PoS P{aUTTONlLL E-KER} (43 l04)) i | |
[BUTTGN-3 CORRICT-HEY [0} (BOS #{BUTTOM-12 7-HEX} {43 104}} | I | 1
E BUTTOIM-1 CHECKING-=KEY (=1 (Ns'-'{ﬂmﬂ'—ll F R#!} 143 1043 | [| f
[suTTon-2 wWITHDRAW-KEY (o) EM ':{mnn= u.ts ~HE¥] (43 1043} [/ | |
[0] (POE #{SCREEM-1 BCREEW} NI / | | |
(3 MONEY-SLDT-1 MONEY-SLOT [0] [PO§ #{CARD-SLOTCL CARD-$LOT} WIL) | I
[# cARD-SLOT-1 CARD=5LGT lio) (ros l{mn_sl.dr 1 /woNEY-SL0T) WIL} | f
b [KEYPAD-1 KEYPAD [0] [(FO5 #{BUTTON-2 WITHDRAW-KEY} WIL) | / | |
[sckeerit Sineing (0] | (FOS #{BUTTON-1 CHECKING-XEY} MIL} | f |] ,
3 [0] (PDE #{BUTTOH-3 COBRECT-KEY] MIL) | { I

[l1ey (pes f{mougs-1) mity | f f | -
I ,[8] (PoS P{BUTTON-3 HO-KEY} MIL | | | | .
‘I' Lrel :.b-nslli{numu-'u OH-KEY} WIL) | |
i

|' - - e e e—e— T m— T =
SimState *F!HISHEIJ [s.mﬁme > 10678 1" Yo === | [====]]!
1 T (i T T T | I 'y ¥
Festart | Fause | Trace PERT char Charge fant l!mruu I.racnn
| |
Simulaton stabe Simalation Bme Play Step Trace 1o file Claar u'unu Equahm winw
TraceView

Figure 2.1 Sherpa s user interface: Slice View, Inspect View, and Trace View

b) Open an application. Select Load Application from the File menu. Using the di-
rectory browser, open the file <apex>/examples/atm-worlds/cpm.lisp, where
<apex> is the Apex installation directory. Sherpa’s screen will change to reveal
the application control and viewing interface.

3. Run the Application
Press the Play button. Events will print in the Trace View as the simulation runs.

4. Inspect Objects
The Slice View lists the scenario objects in a collapsible hierarchical fashion.
Click on the “lever” icons to expand objects. Click on objects to display infor-
mation about them in Inspect View.

5. View the PERT Chart
Click on the PERT chart button to generate a PERT chart for the simulation run.

Inspect the chart and experiment with its manipulation controls.

Apex Reference Manual (version 2.4.8) - Getting Started 6

Note that the PERT chart window has become the top view tab. To bring up the
application control interface, click on the ATM-CPM-WORLD view tab.

6. Change Trace settings
Click on the Events tab to access the Event View. By default, only a small frac-
tion of the trace data produced during simulation is shown. To see more, click
on the Set show level drop-down menu and select asa-low, then click the Trace
button to show a new (larger) subset of the events generated in the previous sim-
ulation run. See section 3.5.1 for more on controlling trace display.
Event View
Hesouwon ovents
MSN evenls . Set show lewed
ee8 | Sherpa - ATM-CPM Warld
 Fatm-cemwona |
| objects [Fevents| g Ga=l-1Ed
© show Level:| AN v 2]
T =
& TASK-CREATED MOMITOR-CREATED
 MONITOR-SATISFIED @ EMABLEMENT-TESTING-5T]
| ¥ EMABLED ¥ REFUSED-EMABLEMEMT
| ¥ PROCEDURE-SELECTED # CONFLICT-DETECTED
a CONFLICTERESOLVED [PRICRITY - COMPUTED
[RESOURCE-ALLOCATED ™ INTERRUPTED
¥ RESOURCEL DEALLOCATED M TASK-STARTED
EXECUTED, ¥ ¥ RESUMED ;
il Tsnuwz;n A mESET bad null values: 5
il REINSFANTIATED ¥ ASSUMPTION-VIOLATED = | : =
a E WP TE= FlAEE
sTARTED ™ comPLETED [0] (POS #(BUTTON-6 1-KE¥} (43 104})} -
[8] (POS #{BUTTON-7 2-KEY} (431 104}}
& sTOPRED & MODIFIED (6] (FO5 A{DUTTGR-B 3-KEY} (43 104)) M
MOTHING-NEW [SEEM I‘;I E:: :{:m-:n‘;"igi E?:;:;“}
gms ECDLDR o ID‘I [FDE lgm-ll E-EEI; (43 104} 5§
E ORIENTATION E SHAPE 10] (Pos B{DUTTON-12 T-KEX} (43 L04))
[0] (FOS #{BUTTOH-13 B-KEY¥} (43 L04}}
& COMTRAST ™ BLNK [0] [FOS #[BUTTOH-13 3-KEY¥} (43 104} }
| [®] (PS5 #{S5CREEN-1 SCREEN} WIL}
EE SR @ CONTAINS (0] (POS B{CARD-SLOT-1 CARD-SLOT} WIL)
I COMTAINED -BY FIXATED (o] (Pos :{m&!-m-l MONEY-SLOT} HIL)
[3] (B35 BUITOH=-2 WITHDRAW-KEY} HIL}
E WIKNOWED E HELD-GAZE [B] (PDS lgmrrr{m-]. CHECKIRG-KEY} WIL} -
M EnCODED ¥ RETRIEVED g 1 :u :m :{Mf ﬂ::m-utr} WIL}
|_E MEW B REVALUED _ = Iul Ems IEBI.I'I'I‘B;I-: KO-HEY} WIL} .
=) et b L 18] (Pes B {BUTTON-15 OK-KEY} WIL} v
|5im51,a:e FINISHED ;Sim‘lim& 10678 | J [.

Figure 2.2 Sherpa's user interface: Event View

Apex Reference Manual (version 2.4.8) - Getting Started 7

3.0 Using Apex

3.1 Interacting With Apex

Users interact with Apex mainly through three interface elements: a standard text editor
such as Emacs; Apex’s graphical user interface, Sherpa; and a Lisp interactive window,
known as a Listener. In most cases, a user will wish to have all three of these elements
available when building and running Apex applications.

A text editor is needed to create and modify Apex applications. Apex applications
are written in the Common Lisp programming language, for which the most popular ed-
itor is Emacs. By default, Apex starts up inside an Emacs “buffer window”, allowing ac-
cess to the Lisp/Emacs integration provided by Apex’s underlying Lisp system. If so de-
sired, a different text editor may be used.

Sherpa is used to start Apex application runs, examine application elements, and to
generate, format and display application output. It is possible to use Apex without using
Sherpa. However, Sherpa provides the only means for obtaining graphical output from a
simulation (e.g. PERT charts, object trees) and for pausing an application run interactive-
ly.

The Lisp Listener (or simply Listener) is an interactive text window always pres-
ent when Apex is running. Normally, this is the *apex* buffer inside Emacs. Listen-
ers are inherent to Common Lisp systems. Interacting through the Listener can be espe-
cially valuable when debugging Lisp code. A Listener can also be used in place of Sher-
pa as a primary means of interacting with Apex!. This can be done in two ways. First, the
user can directly invoke Lisp functions that control Apex using functions described below
(e.g. (startapp)). Second, a prompt-driven interface can be invoked by entering

(apex)

in the Listener. This provides access to all the features of Apex, except for the graphical
features of Sherpa. The prompt-driven interface is still in development; user feedback is
especially encouraged.

Listeners display debugging information and other messages while Apex runs.
Most of what is normally displayed is internal information that can be ignored. However,
if an error occurs, the Apex run is interrupted and a debugging prompt appears, accom-

! Warning: using the Listener to interact with Apex while also using Sherpa may lead to unex-
pected behavior — only one means should be used in an Apex session.

Apex Reference Manual (version 2.4.8) - Using Apex 8

panied by an error message. Such occurrences are most frequent during development or
modification of a model and are usually caused by Lisp programming errors.

3.2 Introduction to Apex Applications
Apex supports two classes of user applications:

Native applications — Applications that are fully contained in Apex. They use the Apex
simulation engine, allowing an entire application to be a single process. For exam-

ple, many Apex applications simulate one or more humans in a specified physical envi-
ronment. Such applications, usually termed simworlds, include behavior models for all
agents as well as object definitions describing the structure, appearance, and relationships
between simulated physical objects.

Non-native applications — Applications in which one or more Apex components interact
with an application external to Apex such as a simulation run on another computer or an
embodied robot. The X-Plane® example provided with Apex is an example of a non-na-
tive application.

3.3 Loading an Application

In order to run an Apex application, it must first be loaded into Apex. There are three
ways to do this.

1. Select from a list of recently loaded applications. In Sherpa, select Recent
Applications from the File menu. In the Listener, invoke the Apex prompt
(if necessary) by typing (apex) and enter 1oad or lower case letter 1.

By default, Apex remembers the last five applications loaded. This value can
be changed with the expression (change-load-history-size N) where

N is a natural number. This can be entered in the Listener to affect the current
session or be made persistent by placing it in your preferences file (3.6). If
desired, the load history can be cleared by typing (clear-load-history) in
the Listener.

2. Browse files and select an application to load from your local file system.
This is supported only in Sherpa. Select Load Application from the File
menu. 3

2 Warning: currently this feature will not work when Sherpa and Apex are running on different
computers. In this case, you must use method (3) to load a new application (which subse-
quently makes the application selectable in the recent application menu).

3 Warning: you must enter or select an Application Definition File (3.5.2). Loading any other
kind of file will result in an unspecified behavior.

Apex Reference Manual (version 2.4.8) - Using Apex 9

3. Load a specified application from the Listener. Invoke the Apex prompt (if
necessary) by typing (apex) and enter 1oad or 1. Enter the number of the
last menu selection and you’ll be prompted for an application file. Type in the
full pathname of the desired file as a string, e.g.

“c:/apexapps/myworld.lisp™

3.4 Running an Application
Once an application is loaded, it may be manipulated in the following ways:

Starting the application - In Sherpa, click the Play button. In the Listener, type (star-
tapp) . Unless there is user intervention, the application will run to completion or until a
scheduled pause point (simulations only) arrives.

Pausing a running application - In Sherpa, click the Pause button. (If the Pause button
is not selectable, pausing is not available for the application). It is not possible to inter-
actively pause an application in the Listener, though simulations can be programmed to
pause automatically in various ways.

Resetting the application - This restores the application to its initial state. In Sherpa,
click the Reset button. In the Listener, type (resetapp).

Single-stepping the application - Some applications have the ability to be advanced one
step (e.g. time unit) at a time. Native Apex applications are constructed using an event
driven simulation mechanism. Thus, for these applications, a step advances the simula-
tion to the next scheduled simulation event(s) rather than by a fixed amount of simulat-
ed time. Click the Step button in Sherpa, which will be selectable if the application sup-
ports single stepping. In the Listener, type (steppapp) (which will have no effect if sin-
gle-stepping is not supported).

3.5 Creating a New Application

The information covered in this section apply to both native and non-native Apex applica-
tions.

3.5.1 Lisp Programming and Emacs

Apex applications are computer programs written in the Common Lisp language. They
include code written in the Apex API, code written in PDL, and possibly arbitrary Lisp
code Applications are created using a text editor. Emacs is strongly recommended be-
cause of its support for Lisp programming and convenient interface to Allegro Common
Lisp®, the Lisp system upon which Apex is built. A good way to learn Emacs is from a tu-
torial accessible through its Help menu.

Apex Reference Manual (version 2.4.8) - Using Apex 10

3.5.2 Application Definition File

Loading an application (3.3) causes Apex to load an Application Definition File (ADF).
Every ADF contains the form:

(defapplication ...)

This form names the application, specifies libraries (3.5.3) and other files that need to be
loaded and defines how to initialize the application. It can also contain code that custom-
izes the behavior of the application as described in section 3.4. See 5.5 for detailed in-
formation about this form. Many examples can be found in <apex>/examples, where
<apex> is a directory name created by the user at the time of Apex’s installation. A full
example of an ADF is shown in Appendix E.

3.5.3 Application Files

It is acceptable for an Application Definition File (3.5.2) to include all the code (includ-
ing PDL behavior specifications) needed for an application, but code from additional files
will often be needed. This code can be made part of the application definition in either of
two ways.

1. Files may be listed in the :files clause of defapplication (5.5).

2. Files may be loaded arbitrarily, anywhere in the ADF (3.5.2) or other Lisp
files, using the function:

(require-apex-file <filenames>)
where <filename> is a string naming the file.

The additional application files are typically Lisp files*, but may include non-Lisp files,
such as binary files used via Lisp’s foreign function interface. An important rule is that
Lisp source files must have a Lisp extension (.1lisp, .c1, or .1sp) and non-Lisp files
must not have a Lisp extension.

All Lisp files that comprise an application, including the Application Definition
File and library files (discussed in the next section), are required to contain the form:

(apex-info :version <versions)

where <versions is a string naming the version of Apex for which the application is
written. Example application files that come with Apex already contain this form. In new-
ly created files, use “2.4” for <versions. The purpose of this form is to help flag poten-
tial incompatibilities between applications and future versions of Apex.

4 Lisp files may be loaded into Apex in either source or compiled form, but at this time compi-
lation of Lisp source is not performed automatically by Apex.

Apex Reference Manual (version 2.4.8) - Using Apex 11

3.5.4 Libraries

A body of Apex code (e.g. PDL procedures, class definitions) can be shared conveniently
among different applications using libraries. A library is in general a collection of related
definitions that are grouped together for sharing across applications. A library might con-
sist of one file or many files, but this difference is transparent to the users of libraries.

3.5.4.1 Using Libraries
An existing library may be included in an Apex application in either of two ways:
1. Include its name in the : libraries clause of defapplication, e.g.

(defapplication “My World”
:libraries (“human” “Boeing757-cockpit”)

)

2. Load it directly (on demand) with the require-apex-1library form, e.g.

(require-apex-library “human”)

3.5.4.2 Creating Libraries

Like an Apex application, a library can be one file, or have multi-file structure. It has a
top-level file, called a library file, which may contain Lisp code. This file may constitute
the entire library, or it may include other libraries (using require-apex-library de-
fined in 3.5.4.1) or other files (using require-apex-file defined in 3.5.3). A library
file’s name must have the suffix -apex1ib (e.g. human-apexlib. 1lisp). A library may
be filed anywhere, though if it has several or more files, the library can be placed in a di-
rectory named after the library’s “base name”. For example, the human library can be
found if it is filed as either human-apexlib.lisp or human/human-apexlib.lisp).
Any number of libraries can exist and be available to applications.

3.5.4.3 Finding Libraries

The global variable *apex-1library-path* specifies where libraries are found. Itis a
list of directories that are searched in the given order. The default value of this variable is:

(:application “apex:apexlib” “apex:examples:apexlib”)

The special symbol : application means that the application directory itself is first
searched for libraries. The following two strings in this list use Common Lisp’s logical
pathname syntax. Any valid filename syntax for your computer platform may be used.

This search path may be modified as needed. For example, to have Apex first look
in its provided libraries directory (3.5.4.4) and then in the directory C: /me/apexlib,
enter the following form in the Listener:

(setg *apex-library-path* ' (“apex:apexlib”
“C:/me/apexlib”))

Apex Reference Manual (version 2.4.8) - Using Apex 12

For convenience, this form may be put in the user preferences file (3.6) and thus be in ef-
fect for all Apex sessions.

3.5.4.4 Provided Libraries
Apex comes with two sets of libraries:
1. apex:apexlib contains components useful for a wide range of applications.

2. apex:examples:apexlib contains libraries used by the example
applications provided with Apex.

See the comments in the library files for a description of the libraries.
3.5.5 Worldbuilder

Worldbuilder provides a graphical interface for building physical environment models for
Apex simworlds (native applications). It was created by Carnegie Mellon University stu-
dents but currently is not available.

3.6 User Settings and Other Files

When Apex starts, it looks for the existence of a user settings file, and loads it if the file
exists. This is a Lisp file that users may create. It must be saved as the hidden file ~/.ap-
exprefs on Unix-like systems and apex:apexprefs in Windows. This file is for customizing
the user’s Lisp or Apex environment. It may contain arbitrary Lisp code, though its com-
mon function is for setting Apex parameters such as the library search path (3.5.4.3).

Apex automatically maintains other user-related information between sessions in
two different files. There is the hidden file ~/ . apexinfo on Unix-like systems, apex:
apexinfo in Windows, and apex: sherpa.ini on all platforms. These files are gener-
ated and maintained by Apex. Do not edit them!

3.7 Apex Output

Running an Apex application can generate two kinds of output: event traces and PERT
charts.

3.7.1 Generating Event Traces
The activities of Apex agents and other entities (if any) are recorded as a chronology of
events in an event history. Events are displayed as single lines of text specifying the time
the event occurred, an associated agent (if relevant) and a description of the event. For
example, the following event

[4235 Fred] (TASK-STARTED #{TASK-10 (SIGN-IN)})

represents that at time 4235 the agent Fred began a task to “sign in.” By default, time is

Apex Reference Manual (version 2.4.8) - Using Apex 13

measured in milliseconds after the start of the Apex application run. If occurring in a sim-
ulation, this indicates simulated time — i.e. time in the chronological frame of the simula-
tion, not in the real world.

Events are displayed in Sherpa’s Trace View as they occur while the application
runs. The trace appears in the Listener when Sherpa is not being used. Sherpa’s trace
view has a limited scroll size and it is possible to redirect trace output to the Listener by
checking the “Trace To Listener” flag in the Trace menu. Regardless of whether events
are displayed during a run, they may be viewed after a run (or while the application has
been paused) by pressing the Trace button (see Figure 2.1). To request a trace in the Lis-
tener, type (generate-trace).

A simulation trace may be viewed in its entirety, but this may contain thousands of
events or more. A user can specify filter criteria to reduce the amount of trace informa-
tion displayed. Filtering criteria are applied both to trace data displayed at runtime and to
trace derived from the stored event history. Events are most often filtered based on event
type determined by the first element of an event description. For example, the types of the
two example events below are task-started and suspended, respectively.

[12 Fred] (task-started #{task-21 (fly-to-waypoint) }
[45 Fred] (suspended #{task-19 (push-button-1)}

There are three basic ways to filter event traces:

1. The first is to specify a show level. A show level is a name that specifies a
collection of event types to be shown. In Sherpa, click on the Event tab in the
leftmost display pane; all event types associated with the currently loaded
application are displayed next to checkboxes. The Show Level menu allows
selection among predefined show levels. Selecting a show level causes event
type checkboxes associated with that show level to become checked. In
the Listener, show levels are set with the show function when used in the
following form:

(show :level <level-name>)

where <level -name> is a symbol without quotes. Predefined show levels are
described in Appendix A.

2. Using Sherpa, specify particular event-types of interest. Select the event tab as
above, then click on checkboxes to toggle whether or not to have a particular
event type shown. Note that selecting or unselecting event types modifies the
choices associated with the previous show-level, though that show-level is
still displayed on the interface. In the Lisp Listener, event types are selected
with the show function when used in the following form:

(show <event-types)

where <event -types is a symbol without quotes. Event types are listed in
Appendix A.

Apex Reference Manual (version 2.4.8) - Using Apex 14

3. Inthe Listener (but not Sherpa), it is possible to filter events on parameters
other than, and in addition to, event types. Like the previous features, this is
done using the show function. The show function is described in Appendix A.

Traces generated with a particular filter setting may be saved to a file by typing the fol-
lowing form in the Listener:

(save-trace <filenames>)

where filename is a string and may either be a full pathname, or just a filename. In the
latter case, the trace is saved in the current application’s directory.

3.7.2 Generating and Examining PERT Charts

A PERT chart for a specific agent in a simulation run may be generated by selecting de-
sired agents in the Slice View, then clicking the PERT chart button located above the
trace view pane. New tabs for the PERT charts are created and displayed. If no agent was
selected, PERT charts for all agents will be generated. If there are more than 5 agents, a
warning and confirmation request will appear first. PERT charts cannot be generated via
the Listener. The PERT chart view can be manipulated in several ways.

* Aslider bar provides zoom control
* The expand/contract buttons control distance between PERT boxes
* The timeline button toggles between a PERT view and a timeline view

3.7.3 Exporting a PERT Chart to Microsoft PowerPoint

Sherpa cannot create Microsoft PowerPoint® representations of PERT charts directly. In-
stead, it outputs Visual Basic® macros that can be read in from PowerPoint. PERT charts
you create using the procedure below will not likely fit onto one slide, but will tend to
trail off the right hand edge. You’ll need to edit charts in Sherpa and/or PowerPoint to get
good results.

1. Create a PERT chart in Sherpa.
2. In Sherpa, press the button with the PowerPoint icon. Then select a folder and
filename at the prompt. A Visual Basic macro representing the PERT chart will

be written out at this location.

3. From PowerPoint select from the menu: 7ools > Macro > Visual Basic Editor.
This will open the visual basic editor.

4. From PowerPoint, load the macro created in step 2.
On a Mac: From the Visual Basic interface, select Insert > Module. Select
Insert > File... Set the Show field in the dialog selection box to A/l Files.
Select the file you created in step 2.

On a PC: From the Visual Basic interface, select File > Import File. Select the
file you created in step 2.

Apex Reference Manual (version 2.4.8) - Using Apex 15

5. Return to PowerPoint and click on the slide to contain the PERT chart.
Select from the menu: Tools > Macro > Macros and run the macro
“CreatePERTChart”. For a large PERT chart, this may take a few moments to
complete.

Note: To remove files created in step 2 (which will otherwise accumulate), go
to the Visual Basic editor and select ModuleX in the Project window. From the
menu, then select: File > Remove ModuleX.

3.8 System Patches

Patches provide extensions, modifications or fixes to the existing Apex software without
requiring reinstallation. Users can acquire patches from the Apex web site:

http://human-factors.arc.nasa.gov/apex

The exact URL for patches is not known at the time of this writing, but you’ll be able to
find it easily. Instructions for downloading and installing patches will also be found there,
but the following is a synopsis of the process.

Download all of the .lisp files available and put them in your apex:patches di-
rectory. Delete any patch files with the same name, including any compiled versions
(e.g. those ending in .fasl). Newly installed patches will automatically be in effect the
next time you start Apex. If you wish to install the patches without restarting Apex, type
(load-apex-patches) at the Listener prompt. A brief description of each patch is
found in the file.

3.9 Getting Help
If you experience problems with Apex, please consult the Troubleshooting sections in this
manual and in your Apex installation instructions. If necessary, contact the Apex develop-

ment team by sending email to:

apexhelp@eos.arc.nasa.gov

Email is the strongly preferred means of technical support, and usually receives faster re-
sponse than other means of contact. If you are reporting what appears to be a bug, first
see if you can reproduce it. Please include the following information in your email:

* Detailed description of the problem, including any error messages that
appeared (in their entirety, cut and pasted if possible), the last thing you did

before the problem occurred, and whether you could reproduce the problem.

* Your operating platform: type of computer and operating system, version of Apex
(in “Help” menu of Sherpa), and version of Common Lisp (if applicable).

Apex Reference Manual (version 2.4.8) - Using Apex 16

http://human-factors.arc.nasa.gov/apex
http://human-factors.arc.nasa.gov/apex

4.0 Procedure Description Language (PDL)

“By relieving the brain of all unnecessary work, a good notation sets it
free to concentrate on more advanced problems, and, in effect, increases

the mental power of the race.”
- Alfred North Whitehead

Procedure Description Language (PDL) is a formal language used to specify the behavior
of Apex agents. PDL can be seen as a means of representing particular kinds of content —
e.g. normative behavior as defined by standard operating procedures; a task analysis de-
scribing observed or expected behavior; a human cognitive model reflecting procedural
and declarative memory. However, making effective use of PDL requires also understand-
ing it as a programming language for invoking the capabilities of the Apex Action Selec-
tion Architecture. This section describes the syntax of PDL following a brief overview of
the workings of the Action Selection Architecture — see Freed (1998a) for more detail.

The central language construct in PDL is a procedure, which contains at least an
index clause and one or more step clauses. The index uniquely identifies the proce-
dure and typically describes what kind of task the procedure is used to accomplish. Each
step clause describes a subtask or auxiliary activity prescribed by the procedure.

(procedure
(index (turn-on-headlights)
(step s1 (clear-hand left-hand))
(step s2 (determine-location headlight-ctl => ?loc)
(step s3 (grasp knob left-hand ?loc) (waitfor ?sl ?s2))
(step s4 (pull knob left-hand 0.4) (waitfor ?s3))
(step s5 (ungrasp left-hand) (waitfor ?s4))
(step s6 (terminate) (waitfor ?s5)))

The procedure above represents a method for turning on the headlights in some cars and
illustrates several important aspects of PDL. One important point is that a procedure’s
steps are not necessarily carried out in the order listed or even in a sequence. Instead,
steps are assumed to be concurrently executable unless otherwise specified. If step order-
ing is desired, a waitfor clause is used to specify that the completion (termination) of
one step is a precondition for the start (enablement) of another. In the example above, the
steps labeled s1 and s2 do not contain waitfor clauses and thus have no preconditions;

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 17

these steps can begin execution as soon as the procedure is invoked and can run concur-
rently. Step s3, in contrast, includes the clause (waitfor 2?s1 ?2s2). This means that
step s3 becomes enabled only when steps s1 and s2 have terminated.

Procedures are invoked to carry out an agent’s active tasks. Tasks, which can be
thought of as agent goals, are stored on a structure called the agenda internal to the Ac-
tion Selection Architecture. When a task on the agenda becomes enabled (eligible for im-
mediate execution), what happens next depends on whether or not the task corresponds to
a primitive action. If so, the specified action is carried out and then the task is terminated.
There are a limited number of primitive action types (see section 4.3), each with a distinct
effect.

If the task is not a primitive, the Action Selection Architecture retrieves a procedure
whose index clause matches the task. For example, a task of the form (turn-on-head-
lights) matches the index clause of the procedure above and would thus be retrieved
once the task became enabled. step clauses in the selected procedure are then used as
templates to generate new tasks, which are then added to the agenda. It is conventional
to refer to these tasks as subtasks of the original and, more generally, to use genealogical
terms such as child and parent to describe task relationships. In this example, there are six
steps so six new tasks will be created. The process of decomposing a task into subtasks
on the basis of a stored procedure is called task refinement. Since some of the tasks gen-
erated through this process may themselves be non-primitive, refinement can be carried
out recursively. This results in the creation of a task hierarchy.

An Apex agent initially has on its agenda a single task specified by the user, which
defaults to the form (do-domain). All agent behavior results from tasks descending hi-
erarchically from this initial task. Thus, the specification of agent behavior for a given ap-
plication (model) must include either a procedure with the index clause

(index (do-domain))

or one whose index clause matches the specified initial task. Steps of this procedure
should specify not only the main “foreground” activities of the agent, but also any appro-
priate background activities (e.g. low priority maintenance of situation awareness) and
even reflexes (e.g. pupil response to light).

4.1 Action Selection Architecture (ASA)

The Action Selection Architecture® is the algorithm Apex uses to generate behavior. Input
to the algorithm consists of events that the agent might respond to and a set of predefined
PDL procedures. The architecture outputs commands to resources. When used to gener-
ate behavior for a simulated human agent, resources are representations of cognitive, per-
ceptual and motor faculties such as hands and eyes. Since the Action Selection Architec-
ture could be used to model other entities with complex behavior such as robots and auto-

5> The term task generalizes the concept of a classical goal — i.e. a well-defined state, expressible as a prop-
osition, that the agent can be seen as desiring and intending to bring about (e.g. “be at home”). Tasks can
also, e.g., encompass multiple goals (“be in car seat with engine started and seatbelt fastened”), specify
goals with indefinite state (“finish chores”), specify goals of action rather than state (“scan security pe-
rimeter”’), and couple goals to arbitrary constraints (“be at home by 6pm”).

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 18

piloted aircraft, resources could correspond to, e.g. robotic arms or flight control surfaces.
The Action Selection Architecture incorporates a range of functional capabilities accessi-
ble through PDL. These functions fall into four categories:

* Hierarchical action selection

¢ Reactive control

* Resource scheduling

* General programming language functions

Hierarchical action selection refers to the process of recursively decomposing a high-
level task into subtasks, down to the level of primitive actions. The basic process of se-
lecting action by hierarchical task decomposition is simple. Tasks become enabled when
their associated preconditions have been satisfied. If the task is not a primitive, a proce-
dure whose index clause matches the task is retrieved and one new task (subtask) is creat-
ed for each step of the selected procedure. If the enabled task is a primitive, the specified
action is executed and the task is terminated.

PDL provides flexibility in controlling how and when task decomposition takes
place. The issue of how to decompose a task arises because there are sometimes alterna-
tive ways to achieve a goal, but which is best will vary with circumstance. Criteria for se-
lecting between different procedures are represented in the index clause (see section
4.2.2) and the select clause (4.2.5). The issue of when to decompose a task is equal-
ly crucial since an agent will often lack information needed to select the appropriate pro-
cedure until a task is in progress. The ability to specify what needs to be known in order
to select a procedure (informational preconditions) is provided by the wait for clause
(4.2.4).

Reactive control refers to a set of abilities for interacting in a dynamic task environment.
As noted above, the ability to cope with uncertainty in the environment sometimes de-
pends on being able to delay commitment to action; when crucial information becomes
available, the agent can select a response. Another aspect of reactivity is the ability to
handle a range of contingencies such as failure, interruption, unexpected side effects, un-
expectedly early success and so on. Integrating contingency-handling behavior with nom-
inal behavior is quite challenging and benefits from building certain principles and heu-
ristics into the architecture. For example, Apex incorporates a heuristic preference for
continuing an ongoing task over allowing a new task to interrupt. The preference can be
increased or negated using the interrupt-cost construct (4.2.10).

Reactive mechanisms combined with looping (4.2.6) and branching (4.2.2, 4.2.4,
and 4.2.5) allow closed-loop control — i.e. the ability to manage a continuous process
based on feedback. The combination of discrete control mechanisms such as hierarchical
action selection with continuous control mechanisms allows PDL to model a wide range
of behaviors.

Resource scheduling refers to the ability to select execution times that meet specified
constraints for a set of planned actions. Typically, an overriding goal is to make good

® To some, this term implies that the architecture performs Al planning tasks, but not scheduling or control.
The term Action Selection Architecture was chosen to be happily ambiguous about the underlying tech-
nology.

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 19

(possibly optimal) use of limited resources. Actions can be scheduled to run concurrent-
ly unless they conflict over the need for a non-sharable resource (e.g. a hand) or are other-
wise constrained. For example, an eye-movement and an unguided hand movement such
as pulling a grasped lever could proceed in parallel. PDL includes numerous clauses and
primitive action types for dynamically asserting, retracting and parameterizing scheduling
constraints (4.2.4, 4.2.8,4.2.9,4.2.10,4.3.5, 4.3.6, and 4.3.7).

Scheduling is tightly integrated with reactive control and hierarchical planning. In a
less tightly integrated approach, these functions might be assigned to modular elements of
the architecture and carried out in distinct phases of its action decision process. In Apex,
these activities are carried out opportunistically. For example, when the information to
correctly decompose a task into subtasks becomes available, the architecture invokes hi-
erarchical planning functions. Similarly, when there are a set of well-specified tasks and
scheduling constraints on the agenda, Apex invokes scheduling functions.

This has two important implications for the role of scheduling in Apex. First,
scheduling applies uniformly to all levels in a task hierarchy. In contrast, many approach-
es assume that scheduling occurs at a fixed level — usually at the “top” where a sched-
ule constitutes input to a planner. Second, the tasks and constraints that form input to the
scheduler must be generated dynamically by hierarchical planning and reactive control
mechanisms, or inferred from local (procedure-specific) constraints, evolving resource re-
quirements, and changes in the execution state of current tasks. Basic scheduling capa-
bilities can be employed without a detailed understanding of the architecture. For more
advanced uses of these capabilities, it is hoped that the PDL construct descriptions will
prove helpful. Further information can be found in Freed (1998a, 1998b).

General programming language functions such as looping and branching are includ-
ed in PDL language constructs. However, the user will sometimes wish to access data or
functions not directly supported in PDL but available in the underlying Lisp language.
PDL supports callouts to Lisp that apply to different aspects of task execution includ-
ing: precondition handling (4.2.4 and Appendix D), action selection (4.2.5), specification
of execution parameters (4.2.6, 4.2.9, 4.2.10, and 4.2.11), and specification of the actions
themselves (see “special procedures” in 4.2.1).

4.2 PDL Syntax

PDL syntax will be described using the following conventions:
() all PDL constructs are enclosed by parentheses
[] square-brackets enclose optional parameters
<> angle-brackets enclose types rather than a literal values
| vertical bars separate alternative values
{ } curly brackets enclose alternatives unless otherwise enclosed
X" means that 1 or more instances of X are required
X* means that 0 or more instances of X are required

In addition, the following terms are used. A procedure-level clause is a language con-
struct embedded directly in a PDL procedure. Examples include index clauses and step
clauses. Step-level clauses such as waitfor are embedded directly in a step clause. The
procedure construct is itself a first-class construct, meaning that it is not embedded in any
other language element. A pattern parameter is a parenthesized expression that may con-
tain variables (denoted as a symbol starting with a question-mark such as ?x). Patterns,

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 20

which are matched against each other by the pattern matcher (see Appendix D), appear in
several PDL clauses. A Lisp symbol is a sequence of characters that that may include al-
phanumeric characters, dashes, and some other characters. A Lisp symbolic expression,
or s-expression, is either a Lisp symbol or a list of symbols and Lisp expressions enclosed
by parentheses. An Apex variable is a symbol whose first character is a question mark —
e.g. ?x. Symbols and s-expressions in PDL clauses may contain Apex variables.

4.21 procedure
Type: first-class construct

Syntax: (procedure [:concurrent] <index-clause> <procedure-level-clause>")
(procedure [:sequential|:ranked] <index-clause> <step-clause>")
(procedure :special <index-clause> <procedure-level-clause>" <s-expression>)

There are four types of procedures: concurrent, sequential, ranked and special. All types
must contain an index clause. By default, procedures are of type concurrent. This means
that all tasks generated from the procedure’s steps are assumed to be concurrently execut-
able, except where ordering is specified by waitfor clauses. A concurrent procedure will
usually include an explicit termination step such as s4 in the example. In this case, the
parent task open door will end when the last subtask push terminates.

(procedure
(index (open door))
(step sl (grasp door-handle))
(step s2 (turn door-handle) (waitfor ?sl))
(step s3 (push) (waitfor ?s2))
(step s4 (terminate (waitfor ?s3))))
As in this example, it is quite common to define procedures consisting of a totally ordered
set of steps. Such procedures can be conveniently represented using the sequential proce-
dure syntax. The following example is equivalent to the concurrent procedure above.

(procedure :sequential
(index (open door))
(grasp door-handle)
(turn door-handle)
(push))

A sequential procedure includes only an index clause and a list of steps to be carried out
in the listed order. No terminate clause is specified. Only the activity-description argu-
ment of each step is specified; the symbol step, the step-tag argument and step-level
clauses are not required or allowed. Sequential procedures are not really a separate type,
but an alternative syntax. PDL mechanisms automatically translate them into equivalent
concurrent procedures by adding a terminate step and waitfor clauses as needed to speci-
fy step order.

Ranked procedures abbreviate a concurrent procedure form in which rank clauses
(4.2.13) are added to each step. Rank values in these procedures are in ascending order of
appearance. Thus, the following procedure is equivalent to the previous one:

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 21

(procedure
(index (open door))

(step sl (grasp door-handle) (rank 1))

(step s2 (turn door-handle) (rank 2))

(step s3 (push) (rank 3))

(step s4 (terminated) (waitfor ?sl ?s2 ?s3)))

(procedure :ranked
(index (open door))
(grasp door-handle)
(turn door-handle)
(push))

Special procedures are a way to call Lisp code directly during task execution. This is use-
ful for controlling and accessing data from processes external to the Action Selection Ar-
chitecture and for carrying out functions that would be awkward or impossible to repre-
sent purely in PDL. In the first example below, the procedure uses the simulation engine
function end-trial to stop the simulation from continuing (perhaps indefinitely) past
the point of interest.

(procedure :special
(index (stop simulation trial))
(end-trial))

In the next example, a special procedure is used to compute the distance between two
points in a plane. Values returned by the Lisp body of a special procedure are bound to
variables in the return value form (if any) of the calling step (see 4.2.3). Thus, executing a
step such as:

(step s5 (compute-distance ?pl ?p2 => ?d) (waitfor ?s4))
would cause the procedure to be called and its return value bound to the variable ?d.
(procedure :special
points are lists of the form (x y)
index (compute-distance ?pointl ?point2))

(
(sgrt (exp (- (first ?pointl) (first ?point2)) 2)
(exp (- (second ?pointl) (second ?point2)))))

Special procedures may include procedure-level clauses other than index, but may not
include any step clauses. When a task for which a special procedure has been selected
becomes enabled, that task is executed and then terminated just as if it were a primitive
action.

4.2.2 index

Type: procedure-level clause

Syntax: (index <pattern>)

Each procedure must include a single index clause. The index pattern uniquely identifies

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 22

a procedure and, when matched to a task descriptor, indicates that the procedure is appro-
priate for carrying out the task. The pattern parameter is a parenthesized expression that
can include constants and variables in any combination. The following are all valid in-
dex clauses:

(index (press button ?button))

(index (press button ?power-button))
(index (press button ?button with hand))
(index (press button ?button with foot))

Since index patterns are meant to uniquely identify a procedure, it is an error to have pro-
cedures with non-distinct indices. Distinctiveness arises from the length and constant ele-
ments in the index pattern. For example, the first and second index clauses above are not
distinct since the only difference is the name of a variable. In contrast, the 3™ and 4" in-
dex clauses are distinct since they differ by a constant element.

Apex uses the pattern matcher from Norvig (1992), which provides a great deal of
flexibility in specifying a pattern. For example, the following index clause includes a
constraint that the pattern should not be considered a match if the value of the variable is
self-destruct-button.

(index (press button ?button
(?1f (not (eqgl ?button ?self-destruct-button)))))

In the next example, the variable ? * .button-1ist will match to an arbitrary number of
pattern elements. This provides the flexibility to create a procedure that presses a list of
buttons without advance specification of how many buttons will be pressed.

(index (press buttons (?* button-list)))
See Norvig (1992) and Appendix D for more information on the pattern matcher.
4.2.3 step
Type: procedure-level clause
Syntax: (step <step-tag> <step-description [=> {var|pattern}]> [step-level-clause]*)

step clauses in a procedure specify the set of tasks to be created when the procedure is
invoked and may contain additional information on how the tasks should be executed
(e.g. ordering constraints). Each step must contain a step-tag and step-description; op-
tionally, an output variable and/or any number of step-level clauses may be added.

A step-tag can be any symbol (as defined by Lisp), although no two steps in a pro-
cedure can use the same tag. Step-tags provide a way for steps in a procedure to refer to
one another. In particular, whenever a new task is created from a procedure step, the Ac-
tion Selection Architecture creates a variable based on the step tag and binds that variable
to the new task. For example, when (step s4 (go west)) isused to create {task-92
(go west)}, the variable ?s4 is created with the step tag name and bound to the data struc-
ture for task-92. The task refinement process also generates the variable ?self which is
bound to the task being refined — i.e. the parent to task-92 in this example. This allows
subtasks to refer to their parent task.

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 23

The step-description, the part of the step clause that describes behavior, must be
a parenthesized expression corresponding either to the index of one or more procedures
in the agent’s procedure library or to a PDL primitive action type (see section 4.3). It may
contain variables. When a task is enabled, the value of the task description is set to equal
the step description with any variables replaced by values. The task description is used to
invoke a primitive action that is appropriate, or if not, matched against procedure index
clauses to select the correct procedure.

The step-description may include the special symbol => followed by a variable
or other pattern. This specifies one or more output variables that become a return value
when the task derived from a step terminates. Thus,

(step sl (find volume control => ?location))

would create a task find volume control. When this task terminates, it supplies a return
value bound to the variable ? location. See the description of the ‘terminate’ primi-
tive (section 4.3.2) for a description of how return-values are generated.

It is an error for a task description to contain a variable whose value is undefined at
the time the task is enabled. This is avoided by making task specificity a precondition us-
ing ‘waitfor’ clauses. Some ‘waitfor’ preconditions bind values directly. For exam-
ple, (waitfor (on 2object table)) not only waits for something to be on the ta-
ble but also binds the variable ?object as a side effect. Other preconditions wait for the
completion of tasks that insure a variable gets bound. For example, if step s2 waits for
step s1 above to complete, this insures that the variable ? 1ocation will be bound when
a procedure for s2 is selected.

424 waitfor
Type: step-level clause
Syntax: (waitfor {<pattern>|<step-tag-variable>}" [:and <test>"])

A waitfor clause defines a set of task preconditions that must be satisfied for the task to
become enabled — i.e. eligible for execution. Each pattern argument defines a single pre-
condition that is unsatisfied when the task is created. The precondition is considered sat-
isfied when a cogevent matching the pattern is detected. Cogevents are representations of
events that have become available to the Action Selection Architecture. Some cogevents
are generated by the Action Selection Architecture and reflect occurrences within it (e.g.
an event signaling that some task has terminated). Others cogevents are generated exter-
nally, typically by agent perceptual resources such as vision (e.g. to signal that an object
has been detected).

It is important to note that wait for preconditions are satisfied by events, not by
states represented in memory. For example, if a task comes into existence with a precon-
dition of the form (on book table) and a proposition of the same form exists in mem-
oryZ, this will not satisfy the precondition; the task will remain in a pending (non-en-

7 The Apex architecture does not include a built-in memory for world-state. Typically, this function is
handled by a resource component defined to take encode and retrieve commands from the agent mecha-
nisms.

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 24

abled) state until matched to a corresponding cogevent. The Action Selection Architecture
prescribes no particular method for detecting when preconditions are satisfied in the cur-
rent state. One possibility is to include a step in the procedure to explicitly check wheth-
er a precondition is satisfied, either perceptually or by memory retrieval. Note: only al-
lowing events to satisfy preconditions facilitated specification of reactive behavior since
it will sometimes be desirable to act only in response to change.

waitfor clauses are useful for specifying execution order for steps of a procedure.
This is accomplished by making the termination of one step a precondition for the enable-
ment of another. The Action Selection Architecture generates events of the form (ter-
minated <task>) when a task is terminated, so a clause such as (waitfor (ter-
minated ?s3)) will impose order with respect to the task bound to the task-tag-vari-
able 2s3 (see 4.2.3 for information on task-tag-variables). Termination preconditions can
be expressed using an abbreviated form: (waitfor <task-tag-var>)) == (waitfor
(terminated <task-tag-var>)). Thus, the expression (waitfor ?s3) isequivalent
to (waitfor (terminated ?s3)).

Preconditions in a wait for clause are conjunctive; all must be satisfied for the
task to become enabled. Optional tests (s-expressions) following the keyword :and add
additional conjunctive preconditions. These (special) preconditions are evaluated after all
of the normal preconditions (specified before the : and) are satisfied. If any of these ex-
pressions evaluate to nil, the special precondition is considered unsatisfied and the task
does not become enabled. Moreover, it can never become enabled since the tests are not
performed again. This restricts the use of special conditions to representing condition-
al branches in a procedure. In the following example, the agent’s behavior depends on the
relative value of the variables ?my-score and ?his-score.

(step sl (cackle with glee)

(waitfor (final-score ?my-score ?his-score :and
(>= ?my-score ?his-score))))

(step s2 (sulk despondently)

(waitfor (final-score ?my-score ?his-score :and
(< ?my-score ?his-score))))

It is possible to specify disjunctive preconditions using multiple wait for clauses. For
example, step s2 prescribes terminating a hole-digging task if either the hole has been
dug to the specified depth or if the shovel needed to dig breaks.

(step s1 (dig hole ?depth))
(step s2 (terminate)

(waitfor ?sl)

(waitfor (broken shovel)))

Correctly specifying waitfor preconditions is perhaps the trickiest part of PDL. One
important issue arises from the fact that, in Apex, preconditions are satisfied independent-
ly, not jointly as might sometimes seem more intuitive. For example, one might want to
express a behavior that becomes enabled in response to a red light, representing this with:

(waitfor (color ?object red) (luminance ?object high)).

However, vision might detect stopsign-1 that is red but not a light and generate a co-
gevent of the form (color stopsign-1 red). This will satisfy the first listed pre-

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 25

condition, binding the variable ?object to stopsign-1. The second precondition will
then remain unsatisfied unless stopsign-1 becomes highly luminous. Planned improve-
ments to PDL will provide the flexibility to express joint preconditions.

425 select

Type: step-level clause
Syntax: (select <variable> <s-expression>)

The select clause is used to choose between alternative procedures for carrying out a
task. Its influence on selection is indirect. The direct effect of a select clause is to bind
the specified variable to the evaluation of the Lisp-expression argument. This occurs as
the task becomes enabled, just prior to selecting a procedure for the associated task, so in-
stances of the variable in the task description will be replaced by the new value and may
affect procedure selection.

(step sl (press ?button with ?extremity)
(select ?extremity (if (> (height ?button) .5) ‘hand
‘foot)))

In the example above, the value of the variable ?extremity is set to hand if the button
is more than . 5 meters off the ground, otherwise it is set to foot. Assuming procedures
with index clauses (index (press ?button with hand)) and (index (press
?button with foot)), the effect of the selection clause is to decide between the
procedures.

Known bug: a step may only contain one select clause.

4.2.6 period
Type: step-level clause

Syntax: (period :recurrent [<test>] [:enabled [<test>]] [-reffime {enabled|terminated}]
[:recovery <interval>])

The period clause is used to create and control repetition. The simplest form of the
clause, (period :recurrent) declares that the task should be restarted immediate-

ly after it terminates and repeat continuously. In this case, repetition will only cease when
its parent task terminates or the task is explicitly terminated (by a terminate primitive
action). The optional test condition is a Lisp expression that is evaluated; if nil, the task
does not repeat. This makes the task behave as if in a repeat-until loop.

By default, any waitfor preconditions associated with a recurrent task are reset to
their initial unsatisfied state when the task restarts. If present, the optional : enabled ar-
gument causes the task to restart in an enabled state — i.e. with preconditions satisfied. An
optional test for enablement is evaluated at restart-time; if it evaluates to nil, the task is
restarted with all preconditions unsatisfied as in the default case.

The optional : reftime argument is used to specify whether to start a new instance
of the task when the old instance terminates or when the old instance becomes enabled.
Restarting at termination time is the default, producing repetition in the normal sense. If

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 26

the value of reftime equals enabled, the task does not repeat; instead a whole new in-
stance of the task is created, coexisting with the current one. This option is provided as a
way to specify response policies — i.e. that a response task should be generated to a given
class of events even if one or more such response tasks are already ongoing.

(step s5 (shift-gaze ?visob)
(waitfor (new (visual-object ?visob)))
(period :recurrent :reftime enabled))

For example, the step above represents a policy of shifting gaze to any newly appear-

ing object, even if it appears while in the process of shifting gaze to a previously appear-
ing object. If the task only recurred at terminate-time, objects appearing during a previous
gaze-shift response would be ignored. To prevent infinite generation of new task instanc-
es, steps specified with enable-time recurrences cannot be restarted in enabled state. Thus,
the enabled parameter must be nil (the default) and the step must include waitfor pre-
conditions.

The : recovery argument temporarily reduces a repeating task’s priority (4.2.9) in
proportion to the amount of time since the task was last executed. This reflects a reduc-
tion in the importance or urgency of re-executing the task. For example, after checking a
car’s fuel gauge, there is no reason to do so again soon afterwards since little is likely to
have changed. In the following example, the priority of task for repeatedly monitoring the
fuel gauge is reduced to 0 immediately after performing the task, and gradually rises to its
full normal value over a period of 30 minutes.

(step s5 (monitor fuel-gauge)
(period :recurrent :recovery (30 minutes)))

4.2.7 forall
Type: step-level-clause
Syntax: (forall <var> in {<var>|<list>})

The forall clause is used to repeat an action for each item in a list. For example, the
following step prescribes eating everything in the picnic basket.

(step s3 (eat ?food)
(forall ?food in 7?basket-contents)
(waitfor ?s2 (contents picnic-basket ?basket-contents))

The effect of a forall clause is to cause a task to decompose into a set of subtasks,

one for each item in the list parameter. Thus, if the step above generates {task-12 (eat
?food) } and the cogevent (contents picnic-basket (sandwich cheese
cookies)) occurs, the variable ?basket -contents will become bound to the list
(sandwich cheese cookies). Later, when the task bound to ?s2 is terminated, fask-
12 becomes enabled. Normally, the Action Selection Architecture would then select a
procedure for task-12. The forall clause takes effect just prior to procedure selection,
creating a set of new tasks for each item in the forall list. Each of these is a subtask of
the original. In this example, the forall clause would result in subtasks of fask-12 such
as {task-13 (eat sandwich)}, {task-14 (eat cheese)/}and {task-15 (eat cook-

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 27

ies) }. Procedures would then be selected for each of the new tasks.

(step sl (examine indicator ?indicator)
(forall ?instrument in
(fuel-pressure air-pressure temperature))
(period :recurrent))

Note that forall can be combined with period. In the example above, the step pre-
scribes repeatedly examining a set of instruments.

4.2.8 profile
Type: procedure-level clause
Syntax: (profile <resource>")

The profile clause lists discrete resources required for using a procedure. Whenever the
procedure is selected for a task, the resource requirements become additional precondi-
tions (beyond those prescribed by wait for clauses) for beginning execution of the task.
In the following procedure, the task cannot begin until the Action Selection Architecture
allocates a resource named right-hand to it.

(procedure
(index (shift manual-transmission to ?gear))
(profile right-hand)
(step sl (grasp stick with right-hand))
(step s2 (determine-target-gear-position ?gear => ?position))
(step s3 (move right-hand to ?position) (waitfor ?sl ?s2))
(step s4 (terminate) (waitfor ?s3)))

The profile may specify resources as variables as long as these are specified in the in-
dex clause. For example, the procedure above could be specified as follows:

(procedure
(index (shift manual-transmission to ?gear using ?hand))
(profile ?hand)
)

Resource preconditions are not determined until a procedure is selected, and therefore not
after all waitfor preconditions have been satisfied. Thus, the architecture only makes al-
location decisions for tasks that are enabled or already ongoing. The architecture allocates
resources to tasks based on the following rules:

1. A task is competing for the resources listed in its profile if it is either enabled
(all waitfor preconditions satisfied) or already ongoing

8 The profile clause is only used for “blocking” resources such as hands and eyes that can only
be allocated to one task at a time, but may be reallocated freely. There are currently no mech-
anisms to support reasoning about “depletable” resources such as fuel or money.

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 28

2. If only one task competes for a resource, it is allocated to that task

3. If multiple tasks compete for a resource, allocation is awarded to the task with
highest priority (see 4.2.9)

4. 1If one of the tasks competing for a resource is already ongoing (and thus
has already been allocated the resource), its priority is increased by its
interrupt-cost (4.2.10). By default, interrupt cost is slightly positive,
producing a weak tendency to persist in rather than interrupt a task.

5. Tasks at any level in a task hierarchy may require and be allocated resource. A
task does not compete with its own ancestor.

6. Ifaprofile lists multiple resources, it is allocated all of them or none. If
there is a resource for which it is not the highest priority competitor, then it
does not compete for the other resources and any resources already allocated
become deallocated. This rule takes precedence over rules 2 and 3.

Resources listed in a profile clause do not necessarily correspond to components of the
agent resource architecture, the collection of modules that either provide information to
the Action Selection Architecture or can be commanded by it using the primitive action
start-activity (4.3.1). Resources named in a profile clause that do not correspond
to an element of the resource architecture are virtual resources.

429 priority
Type: step-level clause
Syntax: (priority {<integer>|<variable>|<s-expression>})

A priority clause specifies how to assign a priority value to a task in order to deter-
mine the outcome of competition for resources. The assigned value is a unitless integer. It
can be specified as a fixed value, as a variable that evaluates to an integer, or as an arbi-
trary Lisp s-expression.

Atask’s priority is first computed when it becomes enabled, is matched to a
procedure that requires a resource (i.e. includes a profile clause), and is found to conflict
with at least one other task requiring the same resource. If the task is not allocated a need-
ed resource, then it remains in a pending state until one of several conditions arises caus-
ing it to again compete for the resource. These conditions are: (1) the resource is deallo-
cated from a task that currently owns it, possibly because that task terminated; (2) new
competition for that resource is initiated for any task; (3) the primitive action repriori-
tize (4.3.5) is executed on the task. Whenever a task begins a new resource competition,
its priority is recomputed.

A step may have multiple priority clauses, in which case, the priority value
from each clause is computed separately. The associated task is assigned whichever value
is the highest. This value is the local priority value. Tasks may also inherit priority from
ancestor tasks. A task could have one or more inherited priorities but no local priority. Al-
ternately, it may have no inherited priorities but a local priority. In all cases, task priority
equals the maximum of all local and inherited values.

Note: In some cases, a task will become interrupted but one or more of its descen-
dant tasks will become or remain ongoing. These descendants no not inherit priority from
the suspended ancestor.

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 29

4.210 interrupt-cost
Type: step-level clause
Syntax: (interrupt-cost {<integer>|<variable>|<s-expression>})

interrupt-cost specifies a degree of interrupt-inhibition for an ongoing task. inter-
rupt-cost is computed whenever the task is ongoing and competing for resources —
i.e. resources it has already been allocated and is “defending.” The value is added to the
task’s local priority.

4.2.11 assume
Type: procedure-level clause
Syntax: (assume <var> <proposition> <duration>)

An assume clause declares that a specified proposition should be treated as an assump-
tion. By default, the variable specified in the assume clause is set to 7, indicating that the
assumption has not been contradicted. If a cogevent contradiction occurs, then the value
of the variable is set to nil. After an amount of time passes equal to the duration parame-
ter, the value reverts to 7.

The assume clause is meant to be used for procedure selection, allowing the archi-
tecture to select alternative means for carrying out a task in non-standard conditions. For
example, the following procedure selects route B (rather than route A as usual) for getting
home from work if there is accident on highway-5.

(procedure

(index (get home from work))
(assume ?clear-path (accident-on-path route-a false) (1 day))
(step sl (enter and start car))
(step s2 (drive route ?selected-route)

(select ?selected-route

(1f ?clear-path ‘route-a ‘route-b)))

(waitfor ?el))

(step s3 (terminate) (waitfor ?s2)))

One very unusual aspect of the assume clause is that it applies not to tasks, but to pro-
cedures. In other words, the presence of the procedure in the procedure set of an agent
causes the agent to track the specified assumption. If an event contradicting the assump-
tion occurs, then this is reflected in the value of the assumed variable even if the proce-
dure has not been selected for any current tasks. If such a task comes into existence dur-
ing the interval between a detected violation of the assumption and the time when the as-
sumption variable reverts to 7, the assume variable will have the value nil for that task.
A cogevent is considered to violate the specified assumption if the assumption
proposition ends in a Boolean value (7, nil, true, false) and the cogevent has the same
form with the last value in the form holding the opposite value. For example, a cogevent
of the form (accident-on-path route-a true) would violate the assumption in
the example above. Assumption violation also occurs if a cogevent occurs indicating a
changed value in a fluent proposition. For example, the cogevent (color danger-in-

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 30

dicator red) violates an assumption proposition of the form (color danger-in-
dicator green) as long as color propositions have been declared fluents (4.2.12).

To track the truth value of declared assumptions, the architecture automatically
generates a procedure with (index (monitor-assumptions)) and steps for mon-
itoring each assumption specified in an assumption clause. The example above would
cause a step such as the following (simplified)

(step g813 (set-temporary-value ?selected-route nil (1 day))
(waitfor (accident-on-path route-a true))
(period :recurrent))

to be added to the monitor assumptions procedure. This procedure is automatically select-
ed and executed when the agent is initialized, so assumption monitoring is always active.
Since the assumption variable is an Apex global variable, the value is not tied to the cre-
ation or termination of any task and is accessible to all tasks.

4.2.12 declare-fluent
Type: first-class construct
Syntax: (declare-fluent <pattern> <var-list>)

Fluents are propositions that can contradict other, similar propositions. If propositions are
presented in a temporal sequence, they can make other propositions obsolete. For exam-
ple, propositions / and 2 below are contradictory because, quantum mechanics aside, a
device cannot be both on and off at the same time. If proposition / is presented, followed
at some later time by 2, this can be interpreted as a change of state that makes / obsolete.
Propositions 3 and 4, in contrast are not in contradiction because an object can be inside
multiple containers.

(1) (power television-1 on)

(2) (power television-1 off)

(3) (in television-1 living-room-1)
(4) (in television-1 house-1)

The declare-fluent construct specifies that a given propositional form is a fluent. The
pattern parameter is a list containing constants and variables. The variable-list parameter
identifies pattern elements that determine whether the two propositions are potentially in
conflict. Actual conflict requires some difference in value in any remaining variable ele-
ment. For example,

(declare-fluent (power ?device 7?state) (?device))

propositions / and 2 above both match the fluent pattern. Because they have the same
value for ?device, they are potentially in conflict. Because they have different values
for the remaining variable specified in the fluent pattern (i.e. ?state), they are actually
in conflict. The propositions below, in contrast, do not conflict with either / or 2.

(5) (power television-2 off)
(6) (weight television-1 100)

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 31

Fluent definition is used in conjunction with the assume clause (4.2.11) and can be used
to define the information handling behavior of agent resources such as vision and memo-

ry.

4.2.13 rank

Type: step-level clause

Syntax: (rank {<integer>|<variable>|<s-expression>})

Like a priority clause, a rank clause specifies how to determine the outcome of com-
petition for resources. The assigned value is a unitless integer. It can be specified as a
fixed value, as a variable that evaluates to an integer or as an arbitrary Lisp s-expression.
Rank values are computed whenever priority values are computed (4.2.9).

Though also used to resolve resource conflicts, rank is very different from pri-
ority. Whereas a task’s priority is an intrinsic (globally scoped) property, its rank de-
pends on what task it is being compared to. For example, consider the procedure below:

(procedure
(index (record phone number of ?person))
(step sl (determine phone-number of ?person) (rank 1))
(step s2 (write down phone-number of ?person) (rank 2))
(step s3 (terminate) (waitfor ?sl ?s2)))

This procedure specifies that activities related to determining a specified person’s phone
number can be carried out in parallel with activities for writing the number down — i.e.
the latter task and all of its descendant subtasks (e.g. {task-25 (grasp pencil)}) do not
have to wait for the former task to complete. However, resource conflicts will automat-
ically be resolved in favor of the better-ranked task — i.e. the one with the lower priority
value. Thus, if {task-25 (grasp pencil)} and {task-22 (grasp phone book)} both need the
right hand, the latter task will be favored since it descends from a task with superior rank.

To determine rank for two conflicting tasks 4 and B, the architecture locates a pair
of tasks 4’ and B’ for A’ is an ancestor of A, B’ is an ancestor of B, and 4’ and B’ are sib-
lings — i.e. derived from the same procedure. If no rank is specified for 4’ and B’, then 4
and B have no rank relative to one another. Resource conflict is then resolved based on
priority (4.2.9). Otherwise, rank values for 4’ and B’ are inherited and used to resolve
the conflict.

4.2.14 publish

Type: step-level-clause

Syntax: (publish {:on-start|:on-end} <expression>)

The publish clause is a narration facility in PDL. It allows expressions (events) to be

generated upon task initiation (:on-start) or task termination (:on-end). These
events are sent to the global publish-subscribe router *narration-router®. They do not trig-

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 32

ger an ASA cycle. A step may contain any number of publish clauses. See section 5.10
for a description of the publish-subscribe mechanism.

4.3 PDL Primitives

Primitives are actions whose effects are defined by the Apex architecture rather than by

a PDL procedure. They cannot be further decomposed into more fundamental tasks. The
term operator is used for behaviors that are low-level from the point of view of a partic-
ular domain or task model. For example, in some models of human-computer interaction,
behaviors such as pushing a button and moving a mouse to a target location might be
considered operators. Operators are generally represented as PDL procedures that employ
primitives, particularly start-activity. The full set of Apex primitives are described
in the sections below.

4.3.1 start-activity
Type: primitive

Syntax: (start-activity <vesource> <activity-type> [:duration <time>]
[<parameter-value-pair>]*)

The start-activity primitive is used to initiate action in a module external to the Ac-
tion Selection Architecture. Like all primitive tasks, a start-activity task takes zero
time to execute and is terminated immediately®. However, an activity started by the prim-
itive will typically go on for some non-zero time interval. To allow PDL to influence the
activity during this interval and to respond when it completes, the start-activity re-
turns a pointer to a representation of the activity. For example, the start-activity
step in the following procedure signals a resource module (either left-hand or right-hand)
to begin an activity of type pressing. A representation of the activity is returned when
step s1 terminates and is bound to the variable ?a. The activity’s completion is later (1
second later) signaled by a cogevent of the form (completed <activity>), which re-
sults in the termination of the task.

(procedure
(index (press button ?b with ?hand))
(profile ?hand)
(step sl (start-activity ?hand pressing
:target ?b :duration (1 second) => ?a))
(step s2 (terminate) (waitfor (completed ?a))))

A start-activity task essentially sends a message to a resource'® module to begin doing
something. A start-activity step must specify the resource that will receive the mes-
sage followed by the type of activity to be initiated. Other parameters may then be speci-
fied including : duration and others specific to the activity type (e.g. pressing activi-

° The term “task” is reserved for actions and potential actions represented within the action selection archi-
tecture. “Activities” are performed outside the architecture.

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 33

ties require a : target). If no duration parameter is specified in PDL, then the duration is
determined by the resource module and/or the activity type definition.

4.3.2 terminate
Type: primitive
Syntax: (terminate [<task>] [>> <return-value>])

A terminate step defines conditions for stopping execution of a specified task. By de-
fault, the target task is the one whose associated procedure contains the terminate step.
Optionally, the step can specify some other task to be terminated. For example, the pro-
cedure below specifies that the agent should whistle while it works, but stop whistling if
it gets chapped lips. The gold mining task, parent of the tasks generated from steps of the
procedure, terminates when the work is done.

(procedure
(index (mine gold))
(step sl (whistle))
(step s2 (work))
(step s3 (terminate ?sl) (waitfor (chapped lips)))
(step s4 (terminate) (waitfor ?s2)))
Terminating a task has a number of effects:
* The task’s state is set to ferminated.
* The task is removed from the Action Selection Architecture’s agenda.
* The architecture stops monitoring waitfor preconditions associated with the
task.
* Acogevent of the form (terminated <fask>) is generated (4.2.4).
* Any resources allocated to the task are deallocated.
* All of its subtasks are themselves terminated (indirect termination).
e Ifitis aperiodic task (4.2.6) that passes its recurrence test and was not
indirectly terminated, the task is restarted.

4.3.3 reset
Type: primitive
Syntax: (reset <task>)

reset causes the target task to terminate and then restart with all preconditions satisfied.
It is generally used for trying again after a failure. For example,

10 Only resources represented by a module external to the action selection architecture, and thus a compo-
nent of the agents resource architecture, can receive start-activity messages. Resources named in profile
clauses but not externally represented can still be the subject of allocation decisions. These are “virtual
resources.”

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 34

(procedure
(index (start-engine))
(step sl (turn-key))
(step s2 (reset) (waitfor (engine-sound sputtering)))
(step s3 (terminate) (waitfor (engine-sound turned-over))))

4.3.4 cogevent
Type: primitive
Syntax: (cogevent <event>)

The cogevent primitive generates a cogevent of the specified form, potentially match-
ing task preconditions just as cogevents generated by resources (especially perceptual re-
sources) or by the Action Selection Architecture. One important use of this primitive is
to represent states that are inferred but not directly observed, such as hidden effects of an
agent action. For example, step s4 generates an event representing the inference that an
elevator has been summoned after pressing a button for this purpose.

(step s3 (press button elevator-down-button) ...)
(step s4 (cogevent (summoned elevator)) (waitfor ?s3))

The <event> parameter of a cogevent step can be any parenthesized expression not
containing variables.

4.3.5 reprioritize
Type: primitive
Syntax: (reprioritize [<task>])

reprioritize steps are used to specify conditions in which task priorities might have
changed; justifying reevaluation of resource allocation decisions. A reprioritize action
causes the architecture to recompute the specified task’s priority, then initiate a general
competition for the resource(s) needed by the task. If the task is enabled but has not been
allocated resources, this may result in an immediate interruption of the task currently us-
ing those resources. If the task is currently ongoing, reprioritization may cause it to be in-
terrupted.

4.3.6 hold-resource

Type: primitive

Syntax: (hold-resource <resource-name> [:ancestor <integer>])

hold-resource adds a resource to the list of resources a task needs in order to exe-
cute and then causes the task to compete for the resource with other contenders. Whereas
the profile clause (4.2.8) establishes resource requirements as the task is enabled and its
procedure selected, hold-resource adds requirements while the task is already ongo-

ing. If the task competes successfully, there is no immediate effect. If some other task re-

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 35

quiring the specified resource has higher priority, the task is interrupted.

The optional ancestor parameter specifies the target task. By default, the new re-
quirement is added to the parent of the hold-resource task —i.e. the task whose asso-
ciated procedure contains the hold-resource step. This corresponds to an ancestor
value of 1 (1 level up the task hierarchy). Higher values target tasks higher in the hierar-
chy.

4.3.7 release-resource
Type: primitive
Syntax: (release-resource <resource-name> [:ancestor <integer>])

release-resource removes a resource from the list of resources a specified task requires in
order to execute, and then causes the task to compete for its needed resources. It is typically in-
voked while the task is ongoing, freeing up the resource for use by some other task. The option-
al ancestor parameter specifies the target task. By default, the resource requirement is sub-
tracted from the parent of the release-resource task —i.e. the task whose associated proce-
dure contains the release-resource step. This corresponds to an ancestor value of 1 (1
level up the task hierarchy). Higher values target tasks higher in the hierarchy.

4.4 PDL Variables

An understanding of how variable binding occurs and where the information comes from
is crucial for specifying behavior in PDL. Variables in PDL become bound (and rebound)
to values in several different circumstances as summarized below:

* Variables in an index clause are bound after the procedure selection.

* Variables in a profile clause are bound after the procedure selection.

* step tags are tumned into variables and bound to tasks during task refinement.
* Variables in wait for clauses are bound when matching cogevents occur.

* Variables in a selection clause are bound prior to the procedure selection.

* Variables in a return value form (following a =>) are bound at task termination.
* The map variable in a forall clause is bound during task refinement.

* Global variables are initially bound as the agent is initialized.

Apex maintains two kinds of variables: local and global. Local variables are defined with
respect to a set of sibling tasks — i.e. immediate subtasks of a common parent. For exam-
ple, the task {task-25 (get milk from refrigerator fridge-1 with right-
hand) } might become enabled and the following procedure selected to carry it out:

(procedure
(index (get ?item-type from refrigerator
?refrigerator with ?hand))
(profile ?hand)
(step sl (open door of ?refrigerator with ?speed)
(select ?speed (if (> (hunger ?agent) 5)
‘quickly ‘slowly)))
(step s2 (find ?item-type in ?refrigerator => ?location)

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 36

(waitfor ?s1))

(step s3 (grasp object at ?location with ?hand)
(waitfor ?s2))

(step s4 (remove hand ?hand from ?refrigerator)
(waitfor (grasped ?item)))

(step s5 (close door of ?refrigerator) (waitfor ?s4))

(step s6 (terminate) (waitfor ?s5)))

In selecting the procedure, the variables ?item-type, ?refrigerator and ?hand be-
come bound to the values milk, fridge-1 and right-hand respectively. Later, when task-25
is allocated the right-hand resource, new tasks will be created including:

{task-28 (open door of refrigerator-1 with ?speed) }
{task-32 (close door of refrigerator-1) }

Together these local variable bindings generated by selecting a procedure for task-25
form the local context for these tasks. The local context is stored with the parent task.
Note that the printed form of these tasks has some variables replaced by values and some
as variables. The writing convention is that values are shown instead of variables if bind-
ings have been established. Just after task refinement, the variable ?refrigerator is
bound but ?speed is not. This convention does not imply that these values are fixed for
the lifetime of the task. Generally, if a binding changes, the task description will change
to reflect this. Tasks are stored with variables unbound; replacement occurs as needed
based on the current local context.

When the task refinement process creates new subtasks, new bindings are added to
the local context. First, a new variable is created for each step tag in the selected proce-
dure. For instance, the variable ?s5 is created and bound to task-32; the binding is then
added to the local context stored with fask-25. Second, the variable ?self is created and
bound to task-25, enabling subtasks of fask-25 to refer to their parent.

Following task refinement, the state of each task is established. Tasks with wait-
for preconditions are initialized in the pending state and must await enabling cogevents.
Tasks such as task-28 have no preconditions and thus start in an enabled state. Before
the procedure-selection for this task is performed, its select clause is evaluated. In this
case, the variable ? speed will either be assigned the value slowly or quickly depending
on the hunger value of the agent. This new variable binding will then be added to the lo-
cal context, making it available to specify fask-28 and any of its siblings.

With the value of ?speed defined, fask-28 becomes fully specified!. A procedure
for it is selected, it is executed in the usual fashion and later terminates, enabling task-29
for finding milk in fridge- 1. The termination of fask-29 has an important side effect. It re-
turns a value which is bound to the variable ? Llocation. The binding is added to the lo-
cal context.

1 All the variables in a task description must be specified prior to selecting a procedure — i.e. all
must be assigned values either before the task becomes enabled, during enablement as a con-
sequence of cogevent matches, or during the procedure selection process by a select clause. If
procedure selection is attempted for a task that has not been fully specified, this produces an
erTor.

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 37

Bindings are frequently generated as cogevents match to preconditions expressed
in a waitfor clause. In this case, it is assumed that a hand resource automatically gener-
ated an event of the form (grasped <object>) whenever it succeeds in a grasp action.
In this case, the hand generates (grasped milk-1) which causes the variable ?item
to become bound to milk-1. This binding is then added to the local context.

Global variables are initially defined when the agent is initialized. The only glob-
al variable of general importance is ?agent which is always bound to a representation
of the intelligent agent as a whole (although see 4.2.11). To use this effectively requires
knowledge of the kinds of state information stored in an agent structure and how to ac-
cess them. The example used above in which the hunger value of the agent is accessed
is fanciful, though it is possible to extend the general agent model to include any kind of
state data.

Information that results in variable bindings comes from several places. First, it can
come from processes internal to the Action Selection Architecture itself. For example, the
architecture creates the tasks that get bound to step variables and generates cogevents sig-
naling, e.g. task termination, task interruption and resource allocation (Appendix A). Sec-
ond, resources generate cogevents describing the internal state of those resources and, in
the case of perceptual resources, external events and states. Finally, the Action Selection
Architecture can in principle retrieve information from a memory component. The Action
Selection Architecture does not include a memory element, although see Freed (1998a)
for an example.

4.5 Miscellaneous Features
4.5.1 Agent’s Initial Task

An agent’s initial task is specified with the : initial-task initarg, whose value is a
procedure invocation and defaults to * (do-domain). For example,

(let ((jack (make-instance ‘human :name ‘jack

:initial-task ‘'(play roshambo 3 times)))))

If :initial-task is not given when creating an agent instance, a PDL procedure
whose index is (do-domain) must be defined.

4.5.2 PDL Partitions (Bundiles)

A PDL procedure can be associated with some named category (called a partition or bundle) that can
be referred to during agent creation. This allows different agents to have different skill sets. PDL pro-
cedures can be optionally assigned to a partition using the use-bundles form. Agents can be as-
signed a given bundle using the : use-bundles initarg. For examples, wee the Roshambo simworld
(<apex>/examples/roshambo.lisp).

Apex Reference Manual (version 2.4.8) - Procedure Description Language (PDL) 38

5.0 Apex Programming Guide

This chapter of the manual, still under development, is meant to contain detailed descrip-
tions of all functions that comprise the Apex Application Programming Interface (API),
aside from PDL, which was documented in the previous chapter.

5.1 activity

In Apex, the main role of simulation is to allow events to play out over time. An activi-
ty 1s a representation of such a time-structured event. In the simplest case, an activity is
a single, discrete, delayed response to some occurrence such as a message to a simob. A
“message” is simply the invocation of one of the simob’s methods. But, an activity can
also represent multiple and/or continuous responses. For example, the activity of falling
(e.g. results from the removal of a supporting structure for a physical object) produces re-
sponses such as changing the position and motion-vector of an object, as well as an even-
tual collision.

activity, which is a kind of simob, is the superclass (direct or indirect) of all ap-
plication-defined activity classes. For example,

(defclass reading (activity); Reading is a subclass of activity.
((rate ; Number denoting reading speed.
:initarg :rate
:reader rate)))

The predefined methods for activity are listed below. These methods are defined by
Apex for the activity class and have some default behavior. Application-defined activ-
ity classes can override the default methods. Before listing the methods, two parameters
that many of them take are explained.

Some of these methods take as argument a simob. This simob should be the value
of the primary-object slot of the activity. There is some redundancy in this specification,
but it is an artifact of an earlier design and may soon be obsolete.

Some of these methods take an optional keyword argument : cause, which should
be followed by an instance of the Event class. In practice one does not create this object
explicitly, but rather just pass on the : cause argument in the calling function. This argu-
ment specifies the Event that “caused” the ensuing method call to occur and hence sup-
ports causal tracing, which is currently being designed and experimented with. Since
causal tracing is not yet an advertised feature in Apex, this argument may be omitted or
ignored.

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 39

Here are the activity-related methods:

(start-activity simob activity-type &rest parameters)
This function instantiates and starts an activity of a given type for a given
simob. The activity type is the name of an activity class, and simob will be-
come the primary object of the activity. What follows activity-type are
parameters for the activity. They must be given as keyword argument/value
pairs and must include at least one of either an :update-interval ora :
completion-time specification.

The predefined parameters are:

:update-interval
Specifies the time interval (as an integer) in between activity updates, i.e. calls
to update-activity.

:completion-time
Specifies the time (as an integer) when an activity should be completed.

:duration
Specifies a duration (as integral time) for an activity.

:cause
Specifies the cause of an activity start. See the above paragraph about this
argument.

(initialize-activity activity simob &key cause)
This optional method is called when an activity starts, and provides a
means to specify actions that should happen at this time.

(update-activity activity simob &key cause)
This method can be defined for activity and simob types to specify peri-
odic updates to the simob resulting from the activity. For example, a rolling
activity might update an object’s state parameter such as location.

(complete-activity activity simob &key cause)
This method is called when an activity completes.

(stop-activity activity &key cause)
This method is used to terminate an activity without running its completion
method, complete-activity.

(schedule-completion activity time)
This method is used to schedule completion of an activity in a given amount
of time. Time may be given either as an integer or a time expression (see Ap-
pendix A for syntax).

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 40

5.2 Agents

Any number of agents may exist in an Apex application. There are a number of ways to
find or refer to agents in the application code. The global variable “agent” is bound to
the most recently created agent, which is the sole agent in a single agent application. The
global variable “all-agents” is a list of all existing agents.

An agent is created with make-instance. For example,

(let
(agentl (make-instance ‘agent :name ‘agent-1’ ...))
(agent2 (make-instance ‘agent :name ‘agent-2' ...))

2)

name is optional and can be either a symbol or a string. Other useful keyword arguments
are described in Chapter 4. In this example, the Lisp variables agent1 and agent?2 are
bound to the agents and can be used to refer to them. Agents can also be found and re-
ferred to by name:

* The function find-agent takes a name (symbol or string) and returns the
agent having that name, or nil if such an agent does not exist.

» Either an agent name or an instance can be passed as the second argument
to the Lisp function cogevent. This does not apply to the PDL primitive
cogevent, which does not specify an agent. Cogevents generated within PDL
go to the same agent executing the procedure.
5.3 Application Interface

The Lisp interface for manipulating applications is as follows:

(initapp) - initializes the application, which means executing the : init or
:init-sim clause of its defapplication form.

(startapp) - starts the application from its initial state, or resumes execution
from a paused state. This means executing the : start clause of its

defapplication form.

(stopapp) - stops a running application (as specified in the : stop clause of
defapplication).

(stepapp) - Advances the application by one “cycle” (as specified in the : step
clause of defapplication)

(restartapp) - restarts the application from the beginning of its first run
(applicable only to multi-run applications) (as specified in the : restart
clause of defapplication)

(reloadapp) - reloads the current application if there is one.

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 41

These functions take no argument and return no value (they only perform side effects).

For simulations (native applications), all of these functions except ini-
tapp are predefined, and without initapp (specified as the : init-sim clause of
defapplication) the simulation will have no behavior.

For non-native applications, none of these functions are predefined, and without
startapp (specified as the : start clause of defapplication), the application will
have no behavior.

Apex provides defaults for any of these functions that are not predefined or user-
defined. The default behavior is to do nothing.

5.4 asamain

The function asamain invokes one cogevent-processing cycle of the ASA. It’s argument
is the agent whose ASA is being activated. asamain is called automatically in the fol-
lowing cases:

* when the keyword : trigger-asa is passed to the cogevent function
* inthe assemble method of the human class
* atevery cycle of the seeing activity of human

For a non-native application, it may be necessary to call asamain explicitly, but it all de-
pends on the nature of the application. For example, it may need to be invoked inside a
control loop as done in the X-Plane® integration example. In general, it needs to be in-
voked whenever cogevents need to be processed, if : trigger-asa was not passed to
the cogevent function.

5.5 defapplication

This form specifies the initial file set to load for the application, and code that defines the
interface functions for the application (5.3). It has two formats. For native applications
(simulations), it is:

(defapplication <name>
:libraries (<namel> .. <nameN>)
:files (<filel> .. <fileN>)
:init-sim <form>)

and for non-native applications:

(defapplication <namex>
:libraries (<namel> .. <nameN>)
:files (<filel> .. <fileN>)

:init <form>

:reset <form>

:start <form>

:stop <forms>

:step <form>

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 42

:restart <form>)

The first argument <name> is a string that names the application. The <name > arguments
for the : 1ibraries are strings naming libraries. These libraries will be loaded in the or-
der specified. See the Libraries specifications for details about libraries. Note: this is not
necessarily all of the libraries used by the application, both libraries and files can load
other libraries.

The <file> arguments of the :files clause are strings representing either rela-
tive or absolute pathnames. If the file’s extension is omitted, a Lisp extension is assumed
(.lisp, .Isp, or .cl). The files will be loaded in the order specified and constitute the “top
level” files of the application. These files may load other files or libraries.

The <form> arguments of the other clauses are Lisp expressions that will be the
bodies of the respective interface functions named in (5.3). When the function is called,
the form is evaluated in the context of the current top-level Lisp environment (i.e.
defapplication does not create a lexical scope).

All clauses are optional and can appear in any order.

5.6 Event Logging

In contrast to an activity, which represents an ongoing process, an event is an instanta-
neous occurrence in the simulation. Many events, such as activity starts, updates, com-
pletions, and in fact just about any kind of function call, are implicit in the execution of a
simulation. What is useful to the modeler, however, is the tracking of significant events,
and the current means for doing so are the following set of programming constructs.

(setx (slot-name simob) value :key cause agent)

The setx form changes the value of a slot and is a substitute for Lisp’s set £. It works
just like set £ but also records the slot change as part of the simulation’s history and pro-
vides a mean to specify a cause for the slot change. For example,

(defvar *my-book* (make-instance ‘book :number-pages 430))
(setx (current-page *my-book*) 23)

(signal-event function-call &key agent)

The signal-event form is a wrapper around a function call and essentially makes an
event of that function call. What is interesting is that, if the function call includes a :
cause argument, the event created by signal-event is substituted for that cause as
the new head of the causal chain'2. For example, to make the turning of a page of a book
a significant event, replace

(turn-page *my-book*)
with
(signal-event (turn-page *my-book¥*))

(log-event proposition &key cause agent)

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 43

The form log-event is used to record an event in a particular state, expressed as a
proposition, which is represented with an arbitrary list. For example,

(log-event (finished-reading *my-book*))
In the above forms, the keyword parameter : cause has type event and is used for spec-

ifying a causal factor!?2. The :agent keyword parameter has type agent and specifies
the agent that is responsible for the state change.

5.7 Pausing Simulations

Scheduled pause: A pause may be scheduled for a specified simulation clock time. The
time may be specified before the simulation is run, or during a pause, if the (new) sched-
uled pause time is greater than the current time. Pauses are scheduled by typing the fol-
lowing in the Listener:

(set-pause-time N)

where N is an integer specification of the time in simulation time units (milliseconds by
default).

Cyclic pause: A simulation pause can be scheduled to occur once every N simulation
events (events in the simulation engine’s internal activity queue). This is useful for cop-
ing with infinite loop bugs that can occur within a given simulation “moment”, making it
unhelpful to pause at a scheduled time that will never be reached. Such pauses are sched-
uled by typing the following into the Listener:

(set-pause-cycle N)

where N is an integer specifying the number of events.

After initialization: The simulation may be paused immediately after a simulation trial
has been initialized using the form:

(pause-after-init <flag>)

where <flag> is either T (true) or nil (false). This is useful for determining whether a bug
occurs before or after initialization is complete.

After each trial: The Apex simulation engine supports multi-trial simulation runs. The
simulation may be paused at the completion of each trial using the form:

(pause-after-trial <flags)

12 A rudimentary causal tracing system has been added to Apex, but is not yet documented or fully usable.
Therefore, there is not much value in using the : cause parameter.

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 44

where <flag> is either T (true) or nil (false).

Pauses may be specified non-interactively (i.e. in code) by inserting the forms given
above forms in your Lisp simworld code.

5.8 simob

Simob, or simulation object, is the superclass of all entities in an Apex simworld. Any
classes defined by the user must inherit, directly or indirectly, from the simob class. For
example,

(defclass book (simob) ; Class BOOK is a subclass of SIMOB
((number-pages ; slot for number of pages in the book

:initarg :number-pages; name of keyword specifier for slot
:reader number-pages) ; name of (read-only) slot accessor

(current-page ; slot for page being read (bookmark)
:initform 1 ; initial value of slot
:accessor current-page))); name of (read/write) slot accessor

In practice, user-defined objects will not inherit from simob directly, but from one of the subclasses of
simob described in the section Physical Environment Modeling.

5.9 Specifying New Agent Resources

In an Apex human model, the general Action Selection Architecture does not interact with
the world model directly. Instead, perceptual, cognitive, and motor resources comprising
a resource architecture mediate interactions with the world and also constrain the agent to
perform with human limits and other characteristics. Resources are implemented as soft-
ware modules and may be replaced or modified with moderate effort!3. This section de-
scribes how to create a new resource, e.g. a prehensile tail. Users interested in creating or
modifying resources should look at examples in apex/app/building-blocks/human.

Step 1: Define the new resource type.

Every resource is implemented as Lisp class with slots representing resource state attri-
butes. The following defines a class of resources called tail with a single state attribute
called grasp. The value of this slot is a representation of an object that the tail is current-
ly grasping — or nil if no such object exists.

13Tt not always necessary to define new resources to get some of the functionality. If the only need for a re-
source is to affect the agent’s resource allocation, it is enough to simply name the resource in a profile
clause (making it a virtual resource). The action selection architecture will do resource conflict detection
and resolution without regard for whether that resource is associated with a class definition.

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 45

(defclass tail (human-resource physob)
((grasp :accessor grasp :initarg :grasp :initform nil)))

tail inherits from the classes human-resource and physob (which itself inherits
from visob — see Appendix B), which carry along a number of state attributes. Users are
encouraged to study the definitions of these objects. New resource classes associated with
a particular model can be stored in a simworld definitions file.

Step 2: Redefine the class standard-human to include the new resource.

Human models in Apex are instances of the class standard-human. As there is current-
ly no support for human models based on other classes, standard-human and associat-
ed functions must be modified to make use of new resource types. This class is defined in
<apex>/apexlib/human/human.lisp. The first required modification is to the class defini-

tion itself, adding a slot named for the new resource.

(tail :accessor tail :initarg :tail)

Next modify the assemble method defined in the same file to include a call to the function
add-apex-resource

(add-apex-resource (make-instance ‘tail) human-1)

In some cases, it is useful to create active resources — i.e. resources that engage in some
periodic behavior rather than passively accepting commands from the Action Selection
Architecture. Such behaviors can be initialized in the assemble method. For example, the
following line will initiate a wiggle action every 1000 simulation time units (1 unit = Ims
by default). This assumes that the method wiggle has been defined and, when called,
produces an appropriate effect.

(start-activity human-1 ‘wiggle :resource (tail human-1)
:update-interval 1000)

Step 3: If appropriate, define activities the new resource can be commanded to carry out.

Resources representing motor faculties (e.g. hands or tails) can be commanded to action
by the PDL primitive action type start-activity. Each new kind of action (i.e. ac-
tivity) is represented by a class (used to represent the state of the action at a given mo-
ment) and one or more methods defining the effect(s) of the activity. There are two kinds
of methods: complete-activity and update-activity. The former is used to de-
scribe what happens when the activity comes to completion. The latter describes what
happens at intervals prior to completion. The following definitions support the activity
tail-grasp.

(defclass tail-grasp (resource-activity)
((target :accessor target :initarg :target :initform nil)))

(defmethod

complete-activity ((act tail-grasp) (tail-1 tail)é&key cause)
(signal-event

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 46

(grasped (target act) (setting act) :cause cause))

(defmethod grasped ((obj physob) (tail-1 tail) &key cause)
(setx (grasp tail-1) obj :cause cause))

A step from such as the following can be used to invoke this behavior from PDL.:

(step sl (start-activity tail tail-grasp :target banana
:duration 2500))

Step 4: If appropriate, define event-generating processes invoked by the resource.

Some resources, particularly those modeling perception, generate input to the Action Se-
lection Architecture called cogevents. This is accomplished using the function cogevent

(cogevent <eventform> <agent> [:trigger-asa <Booleanx])

where <event forms is an arbitrary list representing what has occurred and <agent > is
a pointer to the (human) agent that has detected the event. The optional trigger parameter
determines whether the event should be processed by the Action Selection Architecture
immediately or whether it should be stored in a buffer and processed the next time a pro-
cessing cycle for the architecture occurs.'

5.10 Publish-Subscribe Mechanism

Apex provides a simple publish-subscribe mechanism as one means for entities to com-
municate with each other and to receive information from the external world. This mech-
anism consists of a router to which any entity may publish information and to which any
entity may subscribe. This information is treated as an event and may appear in event
traces (see 3.7.1 for more information on event tracing). When an event is published to a
router, it is immediately sent to all subscribers of the router. For convenience, there is a
default global router.*®

Subscribers must be instances of a subclass of the ps-mixin class which specializ-
es the following method used to deliver events to an entity.

(defmethod deliver ((recipient ps-mixin) message &key trigger-asa)

14 Signal-event and setx are special forms used to track causal dependencies in a simulation. The former
should be wrapped around a function or method call implementing a change of state to one or more
simulated objects. setx should be used to effect the state change as it were set£f.

15 There is no automatic architecture cycle; it must be triggered by a resource. In the default model, the
vision resource triggers processing periodically.

16 Note: there is one other default router, reserved for use by the narration facility described in section
4.2.14.

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 47

This particular method generates an error (i.e. there is no default delivery method for sub-
classes of ps-mixin). The trigger-asa keyword argument is agent-specific and de-
scribed below.

The mechanism is provided by the class ps-router, and its interface is as fol-
lows. See examples/roshambo.1isp for examples of usage.
Create a router (example):
(defparameter *my-router* (make-instance ‘ps-router))
Subscribe to a router:
(subscribe-to <ps-mixin> <ps-routers>)

Publish to a router:

(publish-to <event> <ps-router> [:author <ps-mixin>] [:trigger-asa nill)
(publish <events> [:author <ps-mixin>] [:trigger-asa nil])

If the : author keyword argument is supplied, then this entity (presumably the publisher
of the event) will not receive the event if it subscribers to the router to which it is publish-
ing. The :trigger-asa keyword argument is agent-specific and determines if an ASA
cycle is triggered in subscribers that are agents. The publish method differs from pub-
lish-to only in that it uses the default global router, often obviating the need to create a
router.

Reset a router, which means clearing its subscribers list:

(reset <ps-routers)

Reset all existing routers (which are automatically tracked):

(reset-ps-routers)

Apex Reference Manual (version 2.4.8) - Apex Programming Guide 48

References

Freed, M. (2000) Reactive Prioritization. In Proceedings 2" NASA International Work-
shop on Planning and Scheduling for Space. San Francisco, CA.

Freed, M. (1998a) Simulating Human Behavior in Complex, Dynamic Environments.
Doctoral Dissertation. Department of Computer Science, Northwestern University.

Freed, M. (1998b) Managing multiple tasks in complex, dynamic environments. In Proceed-
ings of the 1998 National Conference on Artificial Intelligence. Madison, Wisconsin.

Freed, M., Matessa, M., Remington, R., and Vera, A. (2003) How Apex Automates CPM-
GOMS. In Proceedings of the 5th International Conference on Cognitive Modeling, April
10 - 12. Bamberg, Germany.

Freed, M. and Remington, R. (2000a) GOMS, GOMS+ and PDL. In Working Notes of the
AAAI Fall Symposium on Simulating Human Agents. Falmouth, Massachusetts.

Freed, M. and Remington, R. (2000b) Making Human-Machine System Simulation a
Practical Engineering Tool: An APEX Overview. In Proceedings of the 2000 Internation-
al Conference on Cognitive Modeling. Groningen, Holland.

Freed, M. and Remington, R. (1998) A conceptual framework for predicting errors in
complex human-machine environments. In Proceedings of the 1998 Meeting of The Cog-
nitive Science Society. Madison, Wisconsin.

Freed, M. and Remington, R. (1997) Managing decision resources in plan execution. In
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence.
Nagoya, Japan.

Freed, M. and Shafto, M. (1997) Human System Modeling: Some Principles and a Prag-
matic Approach. In Proceedings of the 4th International Workshop on the Design, Specifi-
cation, and Verification of Interactive Systems. Granada, Spain.

Freed, M., Shafto, M., and Remington, R. (1998) Using simulation to evaluate designs:
The APEX approach. In Chatty, S. and Dewan, P., editors, Engineering for Human-Com-
puter Interaction, chapter 12. Kluwer Academic.

Graham, Paul. (1996) ANSI Common Lisp. Prentice Hall, New Jersey.

John, B. E., Vera, A. H., Matessa, M., Freed, M., and Remington, R. (2002) Automating

CPM-GOMS. In Proceedings of CHI’02: Conference on Human Factors in Computing
Systems. ACM, New York, pp. 147-154.

Apex Reference Manual (version 2.4.8) - References 49

Glossary

&key - Lisp symbol in a parameter list. All parameters after it are optional. Graham (1996).

ASA - Action Selection Architecture (ASA) is the algorithm Apex uses to generate be-
havior. Input to the algorithm consists of events that the agent might respond to
and a set of predefined PDL procedures. The architecture outputs commands to
resources.

CPM - CPM refers to the automatic scheduling of low-level cognitive, perceptual, and
motor (CPM) resources that underlie actions. Freed, Matessa, Remington, and

Vera (2003).

Emacs - Emacs is a text editor and software development environment with support for
Lisp programming.

generic
function- A Lisp function made up of one or more methods, which are defined with def -

method. Graham (1996).

GOMS -GOMS is a formal language for representing how human operators carry out spec-
ified routine tasks. It consists of four constructs: goals, operators, methods, and se-
lection-rules (hence the GOMS acronym). Freed and Remington (2000a).

GOMS+ - A GOMS implementation called GOMS+ that incorporates several capability
extensions. As with GOMS, methods in GOMS+ are action sequences. Behav-
iors that are contingent or off critical-path (such as those needed to handle fail-

ure) cannot be represented. Freed and Remington (2000a).

PDL - Procedure Description Language (PDL) is a formal language used to specify the
behavior of Apex agents.

PERT - The US Navy developed the Program Evaluation and Review Technique
(PERT) to plan and control a missile program. PERT charts have a probabilistic
approach that allows estimates for the duration of each activity.

RAP - RAP s aplan and task representation based on program-like reactive action
packages (RAP).

Apex Reference Manual (version 2.4.8) - Glossary 50

slot - In Lisp, a slot belongs to a class and is similar to a field in a structure. It is anal-
ogous to a member variable in a C++ class.

Apex Reference Manual (version 2.4.8) - Glossary 51

Appendix A: Event Traces

A.1 Predefined Show-Levels

all : all events

none 1 no events

default : only task-started events

actions : resource related events

asa-low : Action Selection Architecture event, low detail
asa-medium : Action Selection Architecture event, medium detail
asa-high : Action Selection Architecture event, high detail
cogevents : cognitive events

simulation : activity related events

A.2 Lisp Commands for Controlling Trace Output

(show) : query the current TraceConstraint (syntax on next page)
(show :runtime) : see event trace as simulation runs (useful for debugging)
(show :hms) : see time displayed in hours/mins/secs

(show :level level) : affects the given ShowLevel (see levels list)

(show EventType) : adds event type to trace (see event types list)

(show Constraint) : adds events matching given TraceConstraint to trace
(unshow) : turns off event trace

(unshow :runtime) : suppress runtime display of event trace

(unshow :hms) : see time displayed as an integer

(unshow EventType) :removes event type from trace (see event types list)
(unshow Constraint) : removes events matching given TraceConstraint from trace
(generate-trace) : generate and print the trace

(trace-size) : query number of events in latest trace

(define-show-level name TraceConstraint) : defines show level (name is symbol)

Apex Reference Manual (version 2.4.8) - Appendix A: Event Traces 52

A.3 Trace Constraint Syntax

TraceConstraint:

TraceParameter { see below }
| (and TraceConstraint™*) { matches events meeting all given constraints }
| (or TraceConstraint™®) { matches events meeting any given constraint }
| (not TraceConstraint) { matches events that fail the given constraint }
TraceParameter :

(event-type <symbol>) { matches events of given type }
| (object-id <symbol>) { matches events containing given object }

| (time-range (<low> <high>)) { matches events occurring in given time range }

TimeExpression : (TimePair+) { one or more int/unit pairs }
TimePair : (<integer> TimeUnit)
TimeUnit : ms | msec | msecs

| s | sec | secs | second | seconds

| m | min | mins | minute | minutes

| d | day | days

A.4 Event Types

Each event type is explicitly logged and can be filtered in/out for trace view. Verbose
event descriptions name event parameters not including timestamp.

Causal event 0 is the initialize event. Terminology changes: enabled refers to satisfac-
tion of non-resource preconditions — any resource preconditions not yet satisfied; execut-
ed tasks must take 0 time — i.e. primitive and special (Lisp callout) tasks; started is used

for non-primitives. Resource deallocation events occur when a task is terminated or inter-
rupted.

Apex Reference Manual (version 2.4.8) - Appendix A: Event Traces 53

Table A.4.1 Action Selection Architecture Events

B (1ot inctuding o) —
1 | task-created <task> 0,17
2 | monitor-created <monitor> <task> 0,17
3 | monitor-satisfied <monitor> <cogevent> 2+any
4 | {monitor-tentatively-satisfied } <monitor> <cogevent> 2+any
5 | {monitor-expired} <monitor> 2+time
6 | {monitor-desatisfied} <monitor> <cogevent> 2+any
7 | enablement-testing-started <task> 3
8 | enabled* <task> 1+7+3*
9 [refused-enablement™ <task> 1+7
10 | procedure-selected <task>=> <procedure> &+10
11 | conflict-detected <task> <task> <resource> 10,12
12 | conflict-resolved* : winner <task> :loser <task> 11,13/13
13 | priority-computed for <task> = <priority> 11,15
14 | resource-allocated* <task> <resources> 11+12,16
15 | interrupted* <task> <task> &+12
16 | resource-deallocated* <resource> :from <task> 15,20
17 | task-started* <task> &+14
18 | executed* <task> &+14
19 | resumed* <task> 15+14
20 | terminated* <task> 18,20
21 | reset™® <task> 18
22 | reinstantiated* <task> 8,17,20
23 | assumption-violated <varname> <agent> 3

{} - ASA actions that are not yet supported
* - an associated cogevent is generated

Apex Reference Manual (version 2.4.8) - Appendix A: Event Traces 54

Table A.4.2 Resource Architecture Events

- an associated cogevent is generated

Tl (n0t including time) cvents

Control

1 | started* <activity> <parameters>*
2 | completed*® <activity>

3 [stopped* <activity>

4 | clobbered <activity> :by <activity>
Vision

1 | nothing-new™ vision

2 | pos* <visobfile> <coordinates>
3 [color* <visobfile> <colorname>
4 | orientation* <visobfile> <degrees>

5 [shape* <visobfile> <shapelist|shape>
6 | contrast* <visobfile> <value>

7 | blink* <visobfile> <rate>

8 | elements* <visobfile> <list>

9 | contains* <visobfile> <vof-list>
10 | contained-by* <visobfile> <visobfile>
Gaze

1 | fixated* <visobfile>

winnowed* <visobfile> <feature>

3 | held-gaze* <locus> <time>
Memory

1 | encoded* <proposition>

2 | retrieved*® <proposition>

3 [new* <proposition>

4 | revalued* <proposition>

5 | refreshed* <proposition>

6 [refined* <proposition>
Hands

1 | grasped* <hand> <object>

2 | released* <hand> <object>

3 | moved* <hand> <object>

4 | turned-dial* <hand> <dial> <position>

5 [typed* <hand> <keyboard> <msg>

k

Apex Reference Manual (version 2.4.8) - Appendix A: Event Traces 55

Table A.4.3 General Simulation Events

Description Causal
Event type (not inlc)luding time) events
1 [started-activity <activity> <primary-simob>
2 | initialized-activity <activity> <primary-simob>
3 [updated-activity <activity> <primary-simob>
4 | stopped-activity <activity> <primary-simob>
5 | completed-activity <activity> <primary-simob>

Apex Reference Manual (version 2.4.8) - Appendix A: Event Traces 56

Appendix B: Apex Library

6/6/2003 apex - library.vthought

Classes comprising the provided
library (found in apex/apexlib), are
shown here, along with their super-
classes in the Apex system.

Infrastructure Layer

Simob Activity
Encoding

Audob [1
Audition \ Intelligent Agent Layer / Grasping

Human Visob Agent Resource
External /: Resource Activity :\ Moving

Event 1
Gaze Pulling
Apart
Physob ;
Memory Releasing
Vision Hand Interface Human Retrieving
Object
Voice / \ Seeing
Left Right
Hand Hand
Speaking
Striking
Gaze Turning
Activity

/ y'
Holding Setting Visual Fixating
Gaze Interest

;

Apex Reference Manual (version 2.4.8) - Appendix B: Apex Library 57

Appendix C: Troubleshooting

C.1 Common Problems
This section contains possible solutions to some of the problems users have reported.
1. Problem: A task that should start never does. It seems to wait forever.

Explanations/Solutions:

1. There is a mismatch between the forms (patterns) of the event and waitfor
precondition.

a. One of the patterns contains a spelling error

b. There is a difference in the order of pattern elements. e.g. a perceptual event
of the form (between a b c¢) won’t match a precondition of the form
(between a c b), even though both mean that a is observed to be be-
tween b and c.

c. There is a difference in the type of pattern elements.
e.g. (distance a b 2) vs. (distance a b 2.0)

d. The number of parameters in the events and precondition are different.

2. The event occurs before the task whose precondition it should match comes into
existence. This can happen when events and preconditions are both created at
the same “instant” according to the simulation clock.

3. The event occurs after the task whose precondition it should match is (prema-
turely) terminated.

2. Problem: A task starts prematurely, before its wait for preconditions should be satisfied.

Explanations/Solutions:

1. A precondition is less constrained than it seems to be, allowing it to match
events that it shouldn’t match. e.g. a procedure consists of steps s1 (no pre-
conditions), s2 (waits for s1; binds ?x when it terminates) and s3 (waits for
(color ?x red)). The intention may be to determine an object of interest in
step s2 and then wait for it to turn red, but here s3 will be enabled by observing
ANY red object.

2. An event matching the precondition is being generated from an unexpected source

3. There are disjoint enablement conditions (multiple waitfor clauses), allowing
the task to become enabled for execution in an unexpected way.

Apex Reference Manual (version 2.4.8) - Appendix C: Troubleshooting 58

3. Problem: While running an Apex application, the error “... No methods applicable
for generic function #<STANDARD-GENERIC-FUNCTION (SETF <slor>with
args ... of classes (SYMBOL SYMBOL) ..” appears.

Explanations/Solutions:

There are two problems in the code below that causes the error. First, the apostro-
phe or close-quote (* - ASCII character 39 dec) should be a backquote or open-
quote (~ - ASCII character 96 dec). The visual difference between the apostro-
phe and backquote is subtle. The backquote protects the arguments in the list from
being evaluated. Second, there should be a comma in front of the object instance
Lightswitch to turn symbol evaluation back on. Otherwise, the string “Light -
switch” will be used literally instead of the object instance that was just created.

(LightSwitch (make-instance ‘pobjSwitch
:name “Light Switch”
:locale Cubicle))

(Angelina (make-instance ‘human
:name “Angelina”
:locale Cubicle
:initial-task ‘(TurnOnl LightSwitch))))

The correct code should be: ~ (TurnOnl ,LightSwitch) .

C.2 Known Bugs

Note: bugs associated with specific Apex processes or PDL constructs are listed in the ap-
propriate section.

Apex can crash if an agent acts in reference to a world object at time 0. The reason is that
the behavior might be initiated before the world object is specified and incorporated into
the physical environment model. Avoid this problem by insuring that the assemble meth-
od is called on all physical environment objects before any agent objects are initialized.
The read macro #L that forces a Lisp evaluation at create time does not work in
primitive (directly executable) procedure steps.
Activities can be started with negative duration values. This should produce an error.

C.3 Debugging Techniques

When a program is not working, it is helpful to know the location within the program that
is the source of the trouble. One way to narrow down the search is to print or show status
statements at various spots within the program. These statements act as route markers or
street signs. In Lisp, a function that outputs statements is format.

(format t “**** At the start of the program”)

The t argument indicates that the destination is to standard output, which usually is the
Listener window. The string in quotes is the template for the output. The format func-

Apex Reference Manual (version 2.4.8) - Appendix C: Troubleshooting 59

tion is analogous to the printf function in programming languages like C. The *’s are in-
cluded to make locating the message easier. Here is an example from the Listener win-
dow. The message was placed at the very beginning of the program.

; Looding opex:opexlib;defoault-opexlib.lisp (fopexZ48/opex @
|iihdeFnu1t—npex1ib.lispj

: Loading #switch. lisp

#E¥% At the start of the progrom

: Loading apex:apexlib;human;human-apexlib.lisp (/apex’d @
% /apex 11b/humans/human-apex1ib. Tisp)

- Looding opex:apexlib;physob-opexlib.lisp (/opex248/o0 @

After an Apex program is loaded, all format message calls will be displayed in the Trace
View. In the example below, there are two additional features added to the format func-

tion call. The ~A is a place holder that is to be filled by the variable mySwitch. The ~% is
a new line character.

(defmethod complete-activity ((act FlippingSwitch) (myHand hand))
(let ((mySwitch (switch act)))
(format t
Wk k% k%

Within defmethod complete-activity, ~A~%" mySwitch)
(setf (state mySwitch) ‘on)
)

) ; end defmethod

-——|START PLAY}—--

[0 Angelina) (TASK-STARTED #{TASK-2 (BUILT-IN)})

[0 Angelina) (TASK-STARTED #TASK-3 (TURNON1 #POBJSWITCH Light Switch})})

[0 Angelina)] (TASK-STARTED #{TASK-4 (MAINTAIN-MEMORY-BIAS)})

[0 Angelina)] (TASK-STARTED #{TASK-6 (TURNON2 #{POBJSWITCH Light Switch})})
[***** Within defmethod complete-activity, #{POBJSWITCH Light Switch}

[1000 Angelina] (COMPLETED #{FLIPPINGSWITCH DURATION (1 SEC)})
-——[END PLAY}—-

However, format statements can not be placed within a procedure. The following is
invalid and the message will not be sent to the output destination.

(procedure
(index (TurnOnl ?switch))
(step Flipl (TurnOn2 ?switch))
(format t “***** Within procedure TurnOnl,

(step Stop (terminate) (waitfor ?Flipl))
) ; end procedure

~A~%" mySwitch)

Apex Reference Manual (version 2.4.8) - Appendix C: Troubleshooting 60

Appendix D: Pattern Matching

Pattern matching is used in a variety of PDL constructs including index, waitfor, and
step. These examples illustrate the behavior and capabilities of the pattern-matching al-

gorithm. Source: Paradigms of AI Programming by Peter Norvig (1991).

(pat-match '(x = (?is ?n numberp)) ‘(x = 34))

iiiio-> ((Pn . 34))

(pat-match ' (x = (?is ?n numberp)) '‘(x = x))

iiii —> NIL

(pat-match *(?x (?or < = >) ?y) ‘(3 < 4))

iireo-> ((RY L 4) (X . 3))

(pat-match ' (x = (?and (?is ?n numberp) (?is ?n oddp)))
i —> (PN . 3))

(pat-match ‘' (?x /= (?not ?x)) ‘(3 /= 4))

pireo-> (XL 3))

(pat-match ' (?x > ?y (?if (> ?x ?y))) ‘(4 > 3))

i o> (Y 0 3) (X . 4))

(pat-match ‘(a (?* ?x) d) ‘(a b c d))

iiii o —> ((?X B C))

(pat-match ‘(a (?* ?x) (?* ?y) d) ‘(a b c d))

i o—> ((?Y B C) (?X))

(pat-match ‘(a (?* ?x) (?* ?y) ?x ?y) ‘(ab cd (b c)
i -> ((Y D) (?X B Q))

(pat-match ' (?x ?op ?y is ?z (?1if (eql (Pop ?x ?y) ?z)))
s o-> ((2 .07) (RY . 4) (0P . +) (X . 3))
(pat-match ' (?x ?op ?y (?if (Pop ?x ?y))) ‘(3 > 4))

-> NIL

(pat-match-abbrev ‘'?x* ' (?* ?x))
SRS (?* ?X)
(pat-match-abbrev ‘?y* ' (?* ?y))
cess o> (2% ?Y)

(setf axyd (expand-pat-match-abbrev ‘' (a ?x* ?y* d)))
;iii -> (A (2% ?X) (?* ?Y) D)
(pat-match axyd ‘(a b c d))
-> ((?Y B C) (?X))

1

(pat-match * (((?* ?x)
-> NIL

(?* ?y)) ?x ?y) ‘((abcd (ab)

Apex Reference Manual (version 2.4.8) -

(d)))

‘(3 +4 1s 7))

(c d)))

Appendix D: Pattern Matching 61

Appendix E: Application Definition File
Example

The following is an example of a well-formed Application Definition File. It is included

with the distribution of Apex along with others in the examples directory.

;1 Hello World

;77 This is a trivial simulation designed to exemplify some basic

;1 features of Apex and PDL programming. It consists of a telephone,
;77 which is initially silent, but rings after some time. Upon

; ;i detecting the phone ring, the simulated human answers it.

iii ---- Package

;17 Apex applications must be written in the Common Lisp User package.

;7; This is insured by the following declaration.

(in-package :user)

;17 ---- Bpplication header

;1 Every Apex application file (including libraries) must contain the
;17 following header. The value of :version is the global variable
;i *apex-version*.

(apex-info :version “2.4")

;17 ---- Bpplication definition

;ii The top level file of an application (e.g. this file) is called the
;77 Application Definition File and must contain a defapplication form.

;77 It may be placed anywhere in the file.

(defapplication “Hello World”
:init-sim (hello-world))

;ii ---- Libraries

;7 One can specify needed libraries in defapplication (using the

;ii :libraries clause), but since we are including application code in
;i the same file, we must explicitly load any libraries needed by the

;;; code...

(require-apex-library “human”)

iii ---- Objects

Apex Reference Manual (version 2.4.8) - Appendix E: Application Definition File

62

;ii This scenario has just one object, a highly simplified telephone. A
; ;i telephone is a kind of physical object (physob) .

(defclass telephone (physob)

((state
:type symbol ; possible values: silent, ringing, engaged
:initform ‘silent
:accessor state)

(state-start-time
:type number
:initform 0

:accessor state-start-time)))

;i: ---- Activities
;17 1. “Being” a Phone

;i; We are modeling the telephone as a passive object that simply
;77 “waits” until something happens to it, in our case being it starts
;77 ringing (without any modeled cause). The activity of “being” models

;7 this passive state.
(defclass being (activity) ())

;ii The (simulation) activity of “being a telephone” never ends. It is
;77 updated at regular intervals, at which time if the phone is silent
;7 1t may randomly start ringing. Once the phone starts ringing, it

;;; does so forever in this simplified model.

ii; NOTE the call to cogevent. It implies that the telephone is
;i; telepathically informing the (sole) agent that it is ringing! This
;77 1s an unfortunate ramification of the lack of a communications
;1 framework for Apex agents. The Apex team is working on an elegant

;;; solution.

(defmethod update-activity ((act being) (tel telephone))
(when (and (eq ‘silent (state tel)) (fifty-fifty-chance))
(setx (state tel) ‘ringing)

(cogevent - (ringing ,tel) *agent* :trigger-asa t)))
;7 Physical objects (physobs) require “assembly”. The assemble method
;ii 1s a convenient means for combining many objects into one (not

;i; applicable in this case) and starting initial activities.

(defmethod assemble ((tel telephone) &key component-of)
(start-activity tel ‘being :update-interval 10))

(defun fifty-fifty-chance () ; Support function for update-activity.
(= 0 (random 2)))

Apex Reference Manual (version 2.4.8) - Appendix E: Application Definition File 63

;ii 2. Answering the phone

;77 For simplicity we’ll model picking up the phone as a direct
;77 activity. It is a kind of resource activity because it requires a

;:; resource (hand) of a simulated human.

(defclass picking-up-phone (resource-activity)
((phone
:initarg :phone

:reader phone)))

;17 The activity of picking up the phone has no interesting behavior
;i other than to complete (after the duration specified in its

;i start-activity). At this time the phone is “placed” into the hand,
;77 1t’s state becomes engaged, and an appropriate events (setx) are

; ;7 generated.

(defmethod complete-activity ((act picking-up-phone) (hand hand))
(let ((phone (phone act)))
(setx (grasped-object hand) phone)
(setx (state phone) ‘engaged)))

;17 3. Saying hello

;77 For this we’ll used the SPEAKING activity defined in the Human
;ii library. We’ll just specialize its completion method to create an

;7 appropriate event.

(defmethod complete-activity ((act speaking) (v voice))

(log-event ~ (said , (utterance act)) :agent *agent*))

;;; Procedures

;17 The top level goal for this scenario is simply to answer the phone
;7 when it starts ringing. Note the WAITFOR: it is what binds the
;i variable ?phone to phone object when its given proposition (a

;ii; cogevent) is detected.

(procedure
(index (handle-phone))
(step sl (answer-phone ?phone)
(waitfor (ringing ?phone))
(publish :on-start (answering the ?phone))
(publish :on-end (answered the ?phone)))
(step s2 (end-trial) (waitfor ?2s1)))

;:; To answer the phone, you pick it up and say hello...

(procedure
(index (answer-phone ?phone))
(step pickup (pickup-phone ?phone))
(step talk (say-hello)
(publish :on-start (saying hello into the ?phone))

Apex Reference Manual (version 2.4.8) - Appendix E: Application Definition File

64

(publish :on-end (said hello into the ?phone))
(publish :on-end (second publish))
(waitfor ?pickup))

(step stop (terminate) (waitfor ?talk)))

;7 The phone is answered by starting the picking-up-phone activity (the
;i chosen duration is arbitrary). This procedure completes when that

;i activity completes.

(procedure
(index (pickup-phone ?phone))
(profile right-hand)
(step pickup (start-activity right-hand picking-up-phone :phone ?phone
:duration (1 sec) => ?act))

(step terminate (terminate) (waitfor (completed ?act))))

;17 Speech is uttered by starting the speaking activity (the chosen
;1 duration is arbitrary). This procedure completes when that activity

;i completes.

(procedure
(index (say-hello))
(profile voice)
(step talk (start-activity voice speaking :utterance “Hello?”
:duration (500 ms) => ?act))

(step terminate (terminate) (waitfor (completed ?act))))

;77 ---- Initialization

;i; The essential elements of simulation initialization are creating
;i; Objects and starting at least one activity. In this case the

;i ; assemble methods do the latter (note that these initial “time 0”
;ii activities are started before the simulation starts, technically

;1 speaking). Finally, a few useful event types are enabled with SHOW.

(defun hello-world ()
(let* ((room (make-instance ‘locale :name “Living Room”))
(phone (make-instance ‘telephone :name “Jill’s Phone” :locale room))
(jill (make-instance ‘human :name “Jill” :locale room

:initial-task ‘' (handle-phone))))
(subscribe-to jill *narration-router¥)

(assemble phone)
(assemble jill)

(show second)
(show answered)
(show answering)
(show saying)
(show state)

(show said)

(show completed)))

Apex Reference Manual (version 2.4.8) - Appendix E: Application Definition File 65

Appendix F: Starting Apex within Allegro
Common Lisp

If you have the Franz Allegro Common Lisp (ACL) development environment and wish
to use it to run Apex instead of running Apex from its distribution, then please follow
these steps.

1. Start Emacs: (if you use Emacs).

2. Start ACL: Within Emacs (assuming you have the ACL Emacs interface),
enter “M-x fi:common-1isp” to start ACL. For Macintosh OS X, you can
switch to a command line shell in Emacs using “M-x shell”, where the com-
mand key is the Meta “M” key.

-1:**_Emocs *shell*
M-x shelll]

From the command line, change to the directory containing ACL and enter
alisp. Without Emacs, start the ‘alisp’ executable of ACL (note: There are
several other ACL executables). When ACL has started successfully, a “CL-
USER (1) :” Lisp prompt appears.

[Cheetgh:~] rjew# cd fApplicotions/ocle?
[cheetah:/Applicotions/acl&2] rjew® alisp

International Allegro CL Enterprise Edition

6.2 [Mac 05 X] Cdun 26, 2002 11:19)

Copyright (C) 1985-20802, Franz Inc., Berkeley, CA, USA. All Rights

This development copy of Allegro CL is licensed to:
[TC9389] MASA Ames Research Center

;; Optimizotion settings: sofety 1, spoce 1, speed 1, debug 2.

i; For o complete description of oll compiler switches given the

i: current optimzotion settings evoluote (EXPLAIM-COMPILER-SETTINGS
CL-USERC1): :cd /

Apex Reference Manual (version 2.4.8) - Appendix F: Starting Apex within Allegro Common Lisp 66

3. Load Apex: Change to the directory containing Apex. All ACL commands are pre-
ceded with a :’. In this case, a change to the root directory is : cd /. All Lisp com-
mands are enclosed in () ’s. Enter (load “load”) atthe Lisp prompt. Or,
load Apex using Allegro’s command :1d load.lisp. A status of components
being loaded scrolls across the screen. A “Welcome to Apex!” message ap-
pears after Apex has successfully been loaded.

CL-USERC1): :cd /

/

CL-USERCZ2): :cd aopex248

Sapexddd/

CL-USERC3): (lood "load™)

; Looding /opex248/lood.lisp

i Fost looding from bundle code/tester.fosl.

i Loading aopex:system;utility;debug.lisp

: (/opex248/system/uti1ity/debug. lisp)

; Fost looding apex:system;looding;defsystem. fosl

; (/opex248/system/loading/defsystem. fasl)

i Looding opex:system;loading;intrinsic.system

: C/opexd48/system/loading/intrinsic. system)

i Loading apex:system; loading;sim-engine.system
fanex 4B/ svstem/ T nodi no/=sim-enmi ne. svstem)

4. Start the Sherpa server: Enter (sherpa) at the Lisp prompt. Sherpa is started
as a separate process, so that the Apex Listener can still be used. When Sherpa
has successfully been started, the message “ CL.-USER () : started sherpa
server ...’ appears.

; Fost loading Aopex2d48/system/sherpasocl. fosl
i Fost looding Aopexd48/system/sherpo/pert/pert. fasl
i Fost looding Aopexd48/system/sherpo/pert/cp.fosl

Welcome to Apex!

Version 2.4 Beto, Copyright {C) 2003 NASA Ames Research Center
fpex 1s built on Allegro Common Lisp (R, by Fronz, Inc.
T

CL—USER{%): (sherpu)_

; Looding opex:aopexlib;default-apexlib.lisp (/opex248/apexlib/default
sp)
; Looding fohello.lisp

5. Launch Sherpa: On a Windows or Macintosh system, double click on the
Sherpa icon. On Linux or Solaris, type “java -jar sherpa.jar” in the di-
rectory that contains sherpa.jar (or whatever the Sherpa file is called).

Apex Reference Manual (version 2.4.8) - Appendix F: Starting Apex within Allegro Common Lisp 67

IndeXx

Symbols

&key 50
() 20
<> 20
=> 24

? 20
[]20
{120

| 20

~% 60
~A 60

A

Action Selection Architecture (ASA)
18, 50
activity 39
ADF. See Application Definition File
agent
initial task 38
make-instance 41
specifying new resources 45
apex variable 21
applications 9. See also native ap-
plications; See also non-native
applications
creating 10
loading 9
pausing 10
resetting 10
single-stepping 10
starting 10
Application Definition File 11
application interface 41
asamain 42
assemble 42, 46
assume 30

Cc

cause 40

cogevent 35

Common Lisp. See Lisp
complete-activity 40, 46

completed 33
completion-time 40
conventions 4
CPM 50
CPM-GOMS 1
cyclic pause 44

D

debugging 59
declare-fluent 31
defapplication 42
defclass 46
defmethod 46
duration 40

E

Emacs 5, 50
buffer window 8
event history 13
event logging 43
event traces 13
event types 14
Event View 7

F

forall 27
Freed, Michael 3

G

general programming language
functions 20

general simulation events 56

generic function 50

GNU Emacs. See Emacs

GOMS 1, 50

GOMS+ 50

Graham, Paul 49

Apex Reference Manual (version 2.4.8) - Index 68

H

help 16

hierarchical action selection 19
hold-resource 35
Human-Computer Interaction 1
Human Resource Architecture

(HRA) 1

index 22

init 41

init-sim 41
initapp 41
initial-task 38
Inspect View 6
interrupt-cost 30

J

Java Runtime Environment (JRE) 5
John, Bonnie 49

key 40

L

libraries 12, 43

creating 12

finding 12

provided 13
Lisp 3
Lisp Listener. See Listener
Listener 8

local context 37
log-event 44

make-instance 38
Matessa, Michael 49

N

name 41

native applications 9
non-native applications 9
Norvig, Peter 61

(o)

operator 33
output. See event traces; See PERT
Charts

P

Paradigms of Al Programming 61
patches 16
pausing 10
pausing simulations 44
after each trial 44
after initialization 44
cyclic pause 44
scheduled pause 44
PDL 50
PDL Partitions (Bundles) 38
PDL Primitives 33
PDL Syntax 20
PDL Variables 36
period 26
PERT 50
PERT Charts 15
examining 15
exporting to PowerPoint 15
generating 15
PowerPoint 15
priority 29
procedure 21
Procedure Description Language
(PDL) 17
profile 28
publish 32
publish-subscribe mechanism 47

Q

question-mark 20

Apex Reference Manual (version 2.4.8) - Index 69

R

rank 32

RAP 50

reactive control 19

release-resource 36

reloadapp 41

Remington, Roger 49

reprioritize 35

reset 34

resetting 10

resource-activity 46

resource architecture 45
events 55

resource scheduling 19

restart 41

restartapp 41

S

s-expression 21
schedule-completion 40
scheduled pause 44
select 26
setf 43, 47
setx 43,47
Shafto, Michael 49
Sherpa 8
Event View 7
Inspect View 6
Slice View 6
Trace View 14
show 7,52
show level 14
signal-event 43
simob 45
simworlds. See native applications
single-stepping 10
Slice View 6
slot 39, 51
start 41
start-activity 33, 40
startapp 41
starting 10
Steele, Guy 3
step 23
stepapp 41
stop 41
stop-activity 40

stopapp 41
symbolic expression 21

T

terminate 34
Trace View 6, 14
trigger-asa 42

U

update-activity 40
update-interval 40
user settings 13

\"

variable 21

Vera, Alonso 49
version 11

virtual resources 29
Visual Basic 15

w

waitfor 24
Whitehead, Alfred North 17
Worldbuilder 13

X
X* 20

X+ 20
X-Plane 9

Apex Reference Manual (version 2.4.8) - Index 70

	Contents
	1.0	Introduction
	1.1	What is Apex?
	1.2	System Components
	1.3	Getting More Information
	1.4	Conventions

	2.0	Getting Started
	2.1.	Setting Up
	2.2	Quick Tour

	3.0	Using Apex
	3.1	Interacting With Apex
	3.2	Introduction to Apex Applications
	3.3	Loading an Application
	3.4	Running an Application
	3.5	Creating a New Application
	3.5.1	Lisp Programming and Emacs
	3.5.2	Application Definition File
	3.5.3	Application Files
	3.5.4	Libraries
	3.5.4.1	Using Libraries
	3.5.4.2	Creating Libraries
	3.5.4.3	Finding Libraries
	3.5.4.4	Provided Libraries

	3.5.5	Worldbuilder

	3.6	User Settings and Other Files
	3.7	Apex Output
	3.7.1	Generating Event Traces
	3.7.2	Generating and Examining PERT Charts
	3.7.3	Exporting a PERT Chart to Microsoft PowerPoint

	3.8	System Patches
	3.9	Getting Help

	4.0	Procedure Description Language (PDL)
	4.1	Action Selection Architecture (ASA)
	4.2	PDL Syntax
	4.2.1	procedure
	4.2.2	index
	4.2.3	step
	4.2.4	waitfor
	4.2.5	select
	4.2.6	period
	4.2.7	forall
	4.2.8	profile
	4.2.9	priority
	4.2.10	interrupt-cost
	4.2.11	assume
	4.2.12	declare-fluent
	4.2.13	rank
	4.2.14	publish

	4.3	PDL Primitives
	4.3.1	start-activity
	4.3.2	terminate
	4.3.3	reset
	4.3.4	cogevent
	4.3.5	reprioritize
	4.3.6	hold-resource
	4.3.7	release-resource

	4.4	PDL Variables
	4.5	Miscellaneous Features
	4.5.1	Agent’s Initial Task
	4.5.2	PDL Partitions (Bundles)

	5.0	Apex Programming Guide
	5.1	activity
	5.2	Agents
	5.3	Application Interface
	5.4	asamain
	5.5	defapplication
	5.6	Event Logging
	5.7	Pausing Simulations
	5.8	simob
	5.9	Specifying New Agent Resources
	5.10	Publish-Subscribe Mechanism

	References
	Glossary
	Appendix A: Event Traces
	A.1	Predefined Show-Levels
	A.2	Lisp Commands for Controlling Trace Output
	A.3	Trace Constraint Syntax
	A.4	Event Types

	Appendix B: Apex Library
	Appendix C: Troubleshooting
	C.1	Common Problems
	C.2	Known Bugs
	C.3	Debugging Techniques

	Appendix D: Pattern Matching
	Appendix E: Application Definition File Example
	Appendix F: Starting Apex within AllegroCommon Lisp
	Index

